Câu hỏi:

13/07/2024 1,944

Chứng minh rằng với mọi số tự nhiên n:

a) x+12nx2n2x1 chia hết cho xx+12x+1

b) x4n+2+2x2n+1+1 chia hết cho x+12

c) x+14n+2+x14n+2 chia hết cho x2+1

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm đa thức f(x), biết rằng f(x) chia cho x-3 thì dư 7, f(x) chia cho x-2 thì dư 5, f(x) chia cho (x-2)(x-3) thì được thương là 3x và còn dư.

Xem đáp án » 13/07/2024 16,329

Câu 2:

Tìm dư khi chia các đa thức sau

a) x41:x2+1

b) x43:x2+1.

Xem đáp án » 13/07/2024 3,795

Câu 3:

Chứng minh rằng:

a) x50+x10+1 chia hết cho x20+x10+1

b) x2x9x1945 chia hết cho x2x+1

c) x1010x+9 chia hết cho x12

d) 8x99x8+1 chia hết cho x12

Xem đáp án » 13/07/2024 3,116

Câu 4:

Khi chia đơn thức x8 cho x+12, ta được thương là B(x) và dư là số r1. Khi chia B(x) cho x+12 ta được thương là C(x) và dư là số r2. Tính r2

Xem đáp án » 13/07/2024 2,874

Câu 5:

Tìm đa thức f(x), biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9, còn f(x) chia cho x2+x12 thì được thương x2+3 và còn dư.

Xem đáp án » 13/07/2024 2,599

Câu 6:

Cho đa thức f(x) có các hệ số nguyên. Biết rằng f(0), f(1) là các số lẻ. Chứng minh rằng đa thức f(x) không có nghiệm nguyên.

Xem đáp án » 13/07/2024 1,642

Bình luận


Bình luận