Câu hỏi:

25/03/2021 1,028 Lưu

Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng (AMN) luôn vuông góc với mặt phẳng (BCD). Gọi V1,V2 lần lượt là giá trị lớn nhất và nhỏ nhất của thể tích khối tứ diện ABMN. Tính V1+V2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì các mặt phẳng (SAB), (SBC), (SCA) đều tạo với đáy một góc 60° và hình chiếu vuông góc của S xuống mặt phẳng (ABC) nằm bên trong tam giác ABC nên ta có hình chiếu của S xuống mặt phẳng (ABC) là tâm đường tròn nội tiếp I của tam giác ABC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP