Quảng cáo
Trả lời:
Đáp án D
Vì |x−3,5| ≥ 0 ; |x−1,3| ≥ 0 với mọi x nên |x−3,5| + |x−1,3| ≥ 0 với mọi x.
Để |x−3,5| + |x−1,3| = 0 thì x−3,5 = 0 và x−1,3 = 0 suy ra x = 3,5 và x = 1,3 (vô lý vì x không thể đồng thời nhận cả hai giá trị).
Không có giá trị nào của x thỏa mãn đề bài.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 230
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 02
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận