Câu hỏi:
30/05/2021 3,268Cho bốn mệnh đề sau:
(I) Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong mặt phẳng (α) đều song song với (β).
(II) Hai đường thẳng nằm trên hai mặt phẳng song song thì song song với nhau.
(III) Trong không gian hai đường thẳng không có điểm chung thì chéo nhau.
(IV) Có thể tìm được hai đường thẳng song song mà mỗi đường thẳng cắt đồng thời hai đường thẳng chéo nhau cho trước.
Trong các mệnh đề trên có bao nhiêu mệnh đề sai?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Có 3 mệnh đề sai là (II), (III), (IV).
(II) sai vì hai đường thẳng nằm trên hai mặt phẳng song song thì có thể song song hoặc chéo nhau.
(III) sai vì hai đường thẳng không có điểm chung thì có thể chéo nhau hoặc song song với nhau.
(IV) sai vì nếu tồn tại hai đường song song mà mỗi đường thẳng cắt đồng thời hai đường thẳng chéo nhau cho trước thì cả bốn đường đó sẽ đồng phẳng (mâu thuẫn với dữ kiện hai đường thẳng ban đầu chéo nhau).
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho tứ diện ABCD, G là trọng tâm tứ diện. Gọi G1 là giao điểm của AG và mặt phẳng (BCD), G2 là giao điểm của BG và mặt phẳng (ACD). Khẳng định nào sau đây là đúng?
Câu 3:
Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi I là giao điểm của MQ và NP. Câu nào sau đây đúng?
Câu 5:
Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
Câu 6:
Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho . Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số
về câu hỏi!