Câu hỏi:

22/08/2021 291

Cho hàm số y=f(x)=ax3+bx2+cx+d với a0. Biết đồ thị hàm số có hai điểm cực trị là A(-1;1) , B(1;3). Tính f(4)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có f'(x)=3ax2+2bx+c.

Vì đồ thị hàm số có 2 điểm cực trị A(-1; 1), B(1; 3) nên:

f(1)=1f(1)=3f'(1)=0f'(1)=0a+bc+d=1a+b+c+d=33a2b+c=03a+2b+c=0a=12b=0c=32d=2f(x)=12x3+32x+2. Vậy f(4)=24.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có phương trình hoành độ giao điểm

x3+x+2=2x+2x3+3x=0x(x2+3)=0x=0.

Suy ra tọa độ giao điểm là (0; 2).

Lời giải

Đáp án B

ziz=1+i+...+i1718i18=1.1i181i18i18=2+iz=2+i1i=12+32i.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP