Câu hỏi:

23/08/2021 251 Lưu

Cho hàm số f(x) liên tục trên đoạn 0;π2 và fx+fπ2x=cosx1+sinx2,x0;π2. Tính tích phân I=0π2fxdx

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Xét tích phân I1=0π2fxdx. Đặt u=π2xdu=dx.

Đổi cận x=0u=π2;x=π2u=0.

Suy ra

I1=π20fπ2xdx=0π2fπ2xdx2I1=0π2fxdx+0π2fπ2xdx2I1=0π2fx+fπ2xdx=0π2cosx1+sinx2dx=0π2d1+sinx1+sinx2=11+sinx0π2=121=12I1=14

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Vì điểm M thuộc đồ thị (H) nên y0=4x05x0+1.

Từ đề bài ta có đồ thị hàm số có tiệm cận đứng là x=-1 và tiệm cận ngang là y=4.

Khoảng cách từ điểm Mx0;y0 đến đường tiệm cận đứng bằng x0+1.

Khoảng cách từ điểm Mx0;y0 đến đường tiệm cận ngang bằng y04=4x05x0+14=9x0+1.

Từ đó ta có x0+1+9x0+1=6x0+126x0+1+9=0x0+1=3x0=2Lx0=4TM

Do đó M4;7. Suy ra S=9.

Lời giải

Đáp án C

Ta có: limxy=limx1fx1=0limx+y=limx+1fx1=12

Đồ thị hàm số có 2 đường tiệm cận nagng là: y=0;y=12.

Dựa vào đồ thị ta thấy fx1=0fx=1x=x1,x1<1x=x2,1<x2<1x=x3,1<x3<2x=x4,x4>2

Do đó đồ thị hàm số y=1fx1 có 4 đường tiệm cận đứng.

Vậy đồ thị hàm số có 6 đường tiệm cận

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP