Câu hỏi:

23/08/2021 610

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Tam giác SAB vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi α là góc tạo bởi đường thẳng SD và mặt phẳng (SBC), với α<450. Tìm giá trị lớn nhất của thể tích khối chóp S.ABCD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi D' là đỉnh thứ tư của hình bình hành SADD'.

Khi đó DD'//SA mà SASBC nên DD'SBC.

Ta có SD,SBC^=α=DSD'^=SDA^, do đó SA=AD.tanα=2atanα.

Đặt tanα=x,x0;1.

Gọi H là hình chiếu của S lên AB, ta có VS.ABCD=13SH.SABCD=4a23.SH.

Do đó VS.ABCD đạt giá trị lớn nhất khi SH lớn nhất.

SAB vuông tại S nên SH=SA.ABAB=SAAB2SA2AB=2ax4a24a2x22a=2ax1x22a.x2+1x22=a.

Từ đó maxSH=a khi tanα=22.

Vậy maxVS.ABCD=13a.4a2=43a3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Vì điểm M thuộc đồ thị (H) nên y0=4x05x0+1.

Từ đề bài ta có đồ thị hàm số có tiệm cận đứng là x=-1 và tiệm cận ngang là y=4.

Khoảng cách từ điểm Mx0;y0 đến đường tiệm cận đứng bằng x0+1.

Khoảng cách từ điểm Mx0;y0 đến đường tiệm cận ngang bằng y04=4x05x0+14=9x0+1.

Từ đó ta có x0+1+9x0+1=6x0+126x0+1+9=0x0+1=3x0=2Lx0=4TM

Do đó M4;7. Suy ra S=9.

Lời giải

Đáp án C

Ta có: limxy=limx1fx1=0limx+y=limx+1fx1=12

Đồ thị hàm số có 2 đường tiệm cận nagng là: y=0;y=12.

Dựa vào đồ thị ta thấy fx1=0fx=1x=x1,x1<1x=x2,1<x2<1x=x3,1<x3<2x=x4,x4>2

Do đó đồ thị hàm số y=1fx1 có 4 đường tiệm cận đứng.

Vậy đồ thị hàm số có 6 đường tiệm cận

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay