Câu hỏi:

23/08/2021 277

Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;8;2) và mặt cầu (S) có phương trình S:x52+y+32+z72=72 và điểm B(9;-7;23). Viết phương trình mặt phẳng (P) qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến (P) lớn nhất. Giả sử n=1;m;nm,n là một vectơ pháp tuyến của (P), tính tích m.n.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Cách 1:

Mặt cầu (S) có tâm I(5;-3;7) và bán kính R=62.

IA=5;11;5IA=171>62 nên điểm A nằm ngoài mặt cầu.

IB=4;4;16IB=122>62 nên điểm B nằm ngoài mặt cầu.

A,I,B không thẳng hàng.

Mặt phẳng (P) qua A và tiếp xúc với (S) nên khi (P) thay đổi thì tập hợp các đường thẳng qua A và tiếp điểm tạo thành hình nón.

Gọi AB,P=αdB,P=AB.sinα đạt giá trị lớn nhất A,B,I,H đồng phẳng AIBP ( H là hình chiếu của B lên (P)).

Mặt phẳng (P) qua A và nhận n=1;m;n làm vectơ pháp tuyến nên có phương trình x+mynz8m2n=0.

Mặt phẳng (P) tiếp xúc với SdI,P=R.

5n11m+51+m2+n2=625n11m+52=721+m2+n249m247n2110mn+50n110m47=0  1

Ta có: IA,IB=156;70;24.

Gọi n1 là vectơ pháp tuyến của mặt phẳng (AIB), chọn n1=13;5;2.

Do AIBPn1.n=013+5m2n=0  2.

Thế (2) vào (1) ta được phương trình:

2079m2+8910m+6831=0m=1m=68312079l

Thay m=-1 vào (2) suy ra: n=4.

Vậy m.n=-4.

Cách 2:

Mặt cầu (S) có tâm I(5;-3;7) và bán kính R=62.

Mặt phẳng (P) qua A và nhận n=1;m;n làm vectơ pháp tuyến nên có phương trình x+my+nz8m2n=0.

Mặt phẳng (P) tiếp xúc với (S):

dI,P=R5n11m+51+m2+n2=62dB,P=21n15m+91+m2+n2=5n11m+54m+16n+41+m2+n25n11m+5+44nm+11+m2+n262+442+12+12n2+m2+11+m2+n2=182

Dấu bằng xảy ra khi n4=m1=11m=1;n=4.

Vậy m.n=-4.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=4x5x+1 có đồ thị (H). Gọi Mx0;y0 với x0<0 là một điểm thuộc đồ thị (H) thỏa mãn tổng khoảng cách từ M đến hai đường tiệm cận của (H) bằng 6. Tính giá trị biểu thức S=x0+y02?

Xem đáp án » 23/08/2021 12,318

Câu 2:

Cho hàm số y=f(x) xác định trên \1;2, liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

Số đường tiệm cận của đồ thị hàm số y=1fx1 là:

Xem đáp án » 23/08/2021 6,475

Câu 3:

Giá trị lớn nhất của hàm số y=1cosx trên khoảng π2;3π2 là:

Xem đáp án » 23/08/2021 4,087

Câu 4:

Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y=x, trục hoành và đường thẳng x=4. Thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) quanh trục Ox bằng:

Xem đáp án » 23/08/2021 3,560

Câu 5:

Tập hợp các số phức w=1+iz+1 với z là số phức thỏa mãn z-11 là hình tròn. Tính diện tích hình tròn đó

Xem đáp án » 23/08/2021 1,908

Câu 6:

Một công ty sản xuất một loại cốc giấy hình nón có thể tích 27cm3. Với chiều cao h và bán kính đáy là r. Tìm r để lượng giấy tiêu thụ ít nhất

Xem đáp án » 23/08/2021 1,178

Câu 7:

Cho hàm số y=f(x) xác định trên \1, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên dưới:

Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

Xem đáp án » 23/08/2021 984
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua