Câu hỏi:

24/08/2021 7,081 Lưu

Ông A gửi tiết kiệm ngân hàng 500 triệu đồng theo hình thức lãi kép, loại kỳ hạn 1 tháng với lãi suất 0,6% / tháng. Cuối mỗi tháng đến ngày tính lãi ông A ta đến ngân hàng và rút 2 triệu đồng để chi tiêu. Sau đúng 5 năm kể từ ngày gửi ông A đến và rút hết số tiền còn lại tron ngân hàng, hỏi số tiền đó gần với con số nào dưới đây?

A. 574 triệu đồng

B. 560 triệu đồng

C. 571 triệu đồng

D. 580 triệu đồng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Ta có công thức:

Tn=T1+rnt.1+rn1r với T = 500 triệu đồng, r = 0,6% / tháng, n = 5.12 = 60 tháng.

Suy ra:T60=500.1+0,6%21+0,6%6010,6%571,97 đồng gần nhất với 571 triệu đồng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 1+3a2+a

B. 2+a1+2a

C. a

D. 1+2a2+a

Lời giải

Đáp án D

Ta có: log1218=log218log212=log22.32log222.3=1+2log232+log23=1+2a2+a

Lời giải

Đáp án B

Diện tích hình vuông là: S=42=16m2

Gọi S3 là phần diện tích còn lại (không tô đậm).

Gắn hệ tọa độ nhưu hình vẽ:

Do I(0;4) là đỉnh của parabol (P) nên có phương trình: y=ax2+4B2;0P0=4a+4a=1y=x2+4

Ta có B2;0,D2;4 phương trình DB:y=x+2

Xét phương trình:

x2+4=x+2x=1x=2M1;3. Khi đó

S1=12x2+4x+2dx=12x2+x+2dx=92m2S2=21x2+4dx+12x+2dx=376m2*S3=SS1+S2=163

Suy ra tổng tiền: T=92.200000+376.150000+163.100000=2368333,32,37 triệu đồng.

Chú ý: Ở bài toán này ta có thể sử dụng công thức giải nhanh: “Diện tích giới hạn bởi parabol (P) và trục hoành là: S1+S2=23IO.AB=23.4.4=323m2S2=323S1=32392=376m2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP