Câu hỏi:

29/08/2021 4,893

Cho hàm số f(x) có đạo hàm liên tục trên  thỏa mãn cosx.f'x+sinx.fx=2sinx.cos3x, với mọi x, và fπ4=924. Mệnh đề nào dưới đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Trường hợp 1: cosx=0fx=0 x (loại).

Trường hợp 2: cosx0, khi đó

cosx.f'x+sinx.fx=2sinx.cos3xcosx.f'xcosx'.fxcos2x=sin2x

fxcosx'=sin2xfxcosx'dx=sin2xdxfxcosx=12cos2x+C.

Theo bài, fπ4=924C=92fx=12cos2x.cosx+92cosx.

Vậy fπ3=1982;3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C.

Đặt u=2x+1dv=exdxdu=2dxv=ex

012x+1exdx=2x+1ex10012exdx=1+e.

Vậy ab=1

Câu 2

Lời giải

Chọn C.

Gọi điểm Ia;0;0Ox

Ta có: IA=a32+12;IB=a52+52

Mặt cầu (S) đi qua A,B nên IA=IBa32+12=a52+52

a52+52=a32+12

4a=40a=10I10;0;0R=IA=50.

Vậy phương trình mặt cầu cần tìm là: x102+y2+z2=50.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP