Câu hỏi:

30/08/2021 434 Lưu

Tính tổng T tất cả các nghiệm của phương trình 5sin2x+5cos2x=25 trên đoạn 0;2π.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

- Sử dụng công thức sin2x+cos2x=1.

- Đặt ẩn phụ t=5sin2xt1, đưa phương trình về dạng phương trình bậc hai ẩn t.

- Giải phương trình tìm t.

- Sử dụng công thức hạ bậc: sin2x=1-cos2x2, sau đó giải phương trình lượng giác cơ bản tìm x: cosx=cosαx=±α+k2πkZ.

- Giải bất phương trình 0x2π và tìm các nghiệm thỏa mãn

Ta có:

5sin2x+5cos2x=255sin2x+51-sin2x=255sin2x+55sin2x=25

Đặt t=5sin2xt1, phương trình trở thành

t+5t=25t2-25t+5=0t-52=0t=5tm5sin2x=5=512sin2x=121-cos2x2=12cos2x=02x=π2+kπx=π4+kπ2kZ

Xét x0;2π ta có 0π4+kπ22π-12k72. Mà kZk0;1;2;3.

x=π4;3π4;5π4;7π4

Vậy tổng các nghiệm của phương trình trên đoạn 0;2π là T=π4+3π4+5π4+7π4=4π

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp giải:

- Tính g'(x).

- Giải phương trình g'(x)=0, xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).

- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.

- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.

Giải chi tiết:

Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp  có 2021 phần tử.

Lời giải

Đáp án C

Phương pháp giải:

- Sử dụng định lí: Góc giữa hai mặt phẳng là giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Xác định góc giữa hai mặt phẳng, sử dụng định lí Pytago và định lí Côsin trong tam giác để tính góc.

Giả sử ABCD.A'B'C'D' là khối lập phương có cạnh bằng 1

Dễ thấy BC'EF là hình bình hành nên EF=BC'=2.

Áp dụng định lí Côsin trong tam giác MEF ta có

Mà góc giữa hai mặt phẳng là góc nhọn, có giá trị côsin là số dương.

Vậy cosMC'D';MAB=78585

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP