Câu hỏi:

30/08/2021 241 Lưu

Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số y=x3-3x2 tại ba điểm phân biệt A, B, C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp giải:

- Tìm điều kiện của m để đường thẳng y=m cắt đồ thị y=x3-3x2 tại 3 điểm phân biệt.

- Gọi Aa;m;Bb;m;Cc;ma<b<c là giao điểm của đồ thị hàm số y=x3-3x2 và đường thẳng y=m. Sử dụng giả thiết và định lí Vi-ét cho phương trình bậc ba, lập hệ và giải hệ tìm a,b,c.

- Với mỗi cặp a,b,c tìm được, tìm m tương ứng và tính tổng các giá trị m tìm được.

Giải chi tiết:

Dựa vào BBT, để đường thẳng y=m cắt đồ thị y=x3-3x2 tại 3 điểm phân biệt thì -4<m<0.

Xét phương trình hoành độ giao điểm: x3-3x2=mx3-3x2-m=0*.

Khi đó gọi Aa;m;Bb;m;Cc;ma<b<c là giao điểm của đồ thị hàm số y=x3-3x2 và đường thẳng y=m thì ta có AB=b-aBC=c-a.

Theo bài ra ta có: AB=2BCb-a=2c-ba-3b+2c=0.

Lại có a,b,c là 3 nghiệm phân biệt của phương trình (*) nên áp dụng định lí Vi-ét ta có

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp giải:

- Tính g'(x).

- Giải phương trình g'(x)=0, xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).

- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.

- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.

Giải chi tiết:

Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp  có 2021 phần tử.

Lời giải

Đáp án C

Phương pháp giải:

- Sử dụng định lí: Góc giữa hai mặt phẳng là giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Xác định góc giữa hai mặt phẳng, sử dụng định lí Pytago và định lí Côsin trong tam giác để tính góc.

Giả sử ABCD.A'B'C'D' là khối lập phương có cạnh bằng 1

Dễ thấy BC'EF là hình bình hành nên EF=BC'=2.

Áp dụng định lí Côsin trong tam giác MEF ta có

Mà góc giữa hai mặt phẳng là góc nhọn, có giá trị côsin là số dương.

Vậy cosMC'D';MAB=78585

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP