Câu hỏi:

26/10/2021 271

Xét tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi V1, V2, V3 lần lượt là thể tích của các khối tròn xoay sinh ra khi quay tam giác OCA quanh trung trực của đoạn thẳng CA, quay tam giác OAB quanh trung trực của đoạn thẳng AB, quay tam giac OBC quanh trung trực của đoạn thẳng BC. Khi biểu thức V1+V2 đạt giá trị lớn nhất, tính V3 theo R.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Xét tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi V1, V2, V3 (ảnh 1)

V1=13OP.S1=13OPπAC22=π3OP.PA2=π3OPOA2OP2=π3OPR2OP2

V2=13OQ.S2=13OQπAB22=π3OQ.QA2

=π3OQOA2OQ2=π3OQR2OQ2.

Xét hàm fx=xR2x2. Với 0x<R.

Khi đó f'x=R23x2.f'x=0x=R3x=R3.

Lập bảng biến thiên, thấy rằng maxx0;Rgx=fR3.

Khi đó, áp dụng cho V1,V2: V1+V2=π3OPR2OP2+OQR2OQ2 đạt giá trị lớn nhất khi OP=OQ=R3.

Hay khi đó tam giác ABC cân tại A (do OP = OQ).

Mà lúc đó AB=2R2OQ2=2R2R23=2R63.

Xét tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi V1, V2, V3 (ảnh 2)

Do tam giác ABC cân A nên khi đó AMBC.

Ta có

SABC=12AM.BC=AB.AC.BC4RAM=AB.AC2R=4R2.692R=4R3

Mà AM=AO+OMOM=4R3R=R3

Vậy V3=13OM.S3=13OM.π.MC2=π3OMR2OM2=π3.R3R2R29=8πR381

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Gọi G là trọng tâm của tam giác ABC. Gọi E là trung điểm của BCAGAE=23.

Đường thẳng d đi qua G và song song BC, cắt các cạnh AB, AC lần lượt tại M, N.

AMAB=ANAC=AGAE=23AM=23ABAN=23ACSΔAMN=49SΔABC(1)

Ta có VABC.A'B'C'=SΔABC.AA'VA'.AMN=13SΔAMN.AA' (2)

Từ (1) và (2), suy ra VA'.AMN=427VABC.A'B'C'VBMNCA'B'C'=2327VABC.A'B'C'.

Khi đó tỉ số: VA'.AMNVBMNC.A'B'C'=4272327=423

Cho khối lăng trụ ABC.A’B’C’. Đường thẳng đi qua trọng tâm (ảnh 1)

Lời giải

Chọn B

Xét điểm I thỏa 2IAIB+IC=0 suy ra I1;2;2.

2MA2MB2+MC2=2MI+IA2MI+IB2+MI+IC2=2MI2+2IA2IB2+IC2

2MA2MB2+MC2 nhỏ nhất khi và chỉ khi MI nhỏ nhất hay M là hình chiếu của I lên (P).

Lúc đó, đường thẳng MI có phương trình x=1+3ty=23tz=2+2t suy ra x0=1+3ty0=23tz0=2+2t.

3x03y0+2z015=031+3t323t+22+2t15=0t=1.

Vậy 2x0+3y0+z0=21+3t+323t+2+2t=6t=5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho các số thực dương a > b > 1 > c. Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay