Câu hỏi:
17/12/2021 625Tìm hai số tự nhiên a, b sao cho: a + 2b = 48, a < 24 và ƯCLN(a, b) + 3.BCNN(a, b) = 114.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có a + 2b = 48; vì 2b, 48 chia hết cho 2. Do đó a chia hết cho 2.
Ta lại có: ƯCLN(a, b) + 3.BCNN(a, b) = 114.
Vì 3.BCNN(a, b) chia hết cho 3, 114 cũng chia hết cho 3 nên ƯCLN(a, b) chia hết cho 3 hay a chia hết cho 3.
Suy ra a vừa chia hết cho 2, vừa chia hết cho 3 nên a chia hết cho 6 (vì 2 và 3 nguyên tố cùng nhau) hay a là bội của 6.
Ta có: B(6) = {0; 6; 12; 18; 24; 30; 36; …}.
Do đó, a ∈ {0; 6; 12; 18; 24; 30; 36; …}. .
Vì a < 24 nên a ∈ {6; 12; 18} .
Ta có bảng sau:
a | 6 | 12 | 18 |
b | 21 | 18 | 15 |
ƯCLN(a,b) | 3 | 6 | 3 |
BCNN(a, b) | 42 | 36 | 90 |
ƯCLN(a, b) + 3.BCNN(a, b) | 129 (loại) | 114 (thỏa mãn) | 273 (loại) |
Vậy a = 12, b = 18 thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
a) 225:15 + 3.(2x + 1) = 270
b) 19.(2 + 3 + 4 – 5 + 6 – 7)2 – 9.(7x – 2) = 0;
c) 3.(2x + 1)3 = 81;
d) (x + 1)5 = 243;
e) 2.11x = (32 + 2)3 : (53 – 25:23).22;
g) 7x + 7x + 1 + 7x + 2 = 3.19.343.
Câu 2:
Tìm ước chung lớn nhất của:
a) 44 và 121;
b) 18 và 57;
c) 36; 108 và 1 224.
Câu 3:
Bạn Minh dùng tờ tiền mệnh giá 200 000 đồng để mua một quyển truyện 17 000 đồng. Cô bán hàng có các tờ tiền mệnh giá 50 000 đồng, 20 000 đồng, 10 000 đồng, 5 000 đồng, 2 000 đồng, 1 000 đồng. Bạn Minh nhận được ít nhất bao nhiêu tờ tiền từ cô bán hàng?
Câu 4:
Tìm bội chung nhỏ nhất của:
a) 13 và 338;
b) 321 và 225;
c) 62; 124 và 1 364.
Câu 5:
Cho p và p + 4 là các số nguyên tố (p > 3). Chứng tỏ p + 8 là hợp số.
Câu 7:
Thực hiện các phép tính:
a) 56:4 + 4.(40 – 25) + 2 000:2 – 15.12;
b) 140.(53 – 53:52) – 36:34 – 15.11.(12 – 9);
c) 784:{300:[536 – (23.3.29 – 174) + 50] + 62};
d) 34 567 – [4.(73 – 69)3 – 82.(102 – 98)]2;
e) 527 + {[2.(2.23 + 32 + 42 – 52) + 6780]3:332}.
về câu hỏi!