Câu hỏi:

13/07/2024 1,435

a) (2a – 1).(b2 + 1) = -17;

b) (3 – a)(5 – b) = 2;

c) ab = 18, a + b = 11.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có (2a – 1).(b2 + 1) = -17 nên b2 + 1 là ước của 17 mà b2 + 1  1 nên b2 + 1 = 17 hoặc b2 + 1 = 1.

Ta có bảng sau:

b

  0

 4

   -4

a

 -8

 0

    0

Vậy các cặp (a, b) thỏa mãn là: (0; -8), (4; 0), (-4; 0).

b) Ta có (3 – a)(5 – b) = 2 nên 3 – a là ước của 2 hay 3 – a

    3 – a 

    1 

   2 

   -1 

   -2  

   a

    2   

  1

    4

     5

   b

    3

   4

    7   

     6

Vậy các cặp (a, b) thỏa mãn là: (2; 3), (1; 4), (4; 7), (5; 6).

c) ab = 18, a + b = 11.

Ta có ab = 18 nên a thuộc Ư(18)

Khi đó ta có bảng sau:

a

1

-1

2

-2

-3

3

6

-6

9

-9

18

-18

b

18

-18

9

-9

-6

6

3

-3

2

-2

1

-1

a + b

19

-19

11

-11

-9

9

9

-9

11

-11

19

-19

 

Loại

Loại

Thỏa mãn

Loại

Loại

Loại

Loại

Loại

Thỏa mãn

Loại

Loại

Loại

Vậy các cặp (a, b) thỏa mãn là: (2; 9) và (9; 2). 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

+) Nếu n chẵn thì n chia hết cho 2 nên n(n + 1)(n + 2) chia hết cho 2.

Nếu n lẻ thì n + 1 chia hết cho 2 nên n(n + 1)(n + 2) chia hết cho 2.

Suy ra n(n + 1)(n + 2) chia hết cho 2 với mọi số nguyên n.

+) Nếu n chia hết cho 3 thì n(n + 1)(n + 2) chia hết cho 3.

Nếu n chia cho 3 dư 1 thì n có dạng n = 3k + 1. Khi đó n + 2 = 3k + 3 = 3(k+1) chia hết cho 3 nên n(n + 1)(n + 2) chia hết cho 3.

Nếu n chia cho 3 dư 2 thì n có dạng n = 3k + 2. Khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3 nên n(n + 1)(n + 2) chia hết cho 3.

Suy ra n(n + 1)(n + 2) chia hết cho 3 với mọi số nguyên n.

Vậy n(n + 1)(n + 2) chia hết cho 2 và 3 với mọi số nguyên n.

b)

+) Nếu n chẵn thì n chia hết cho 2 thì n + 2 chia hết cho 4 nên n(n + 1)(n + 2)(n + 3) chia hết cho 8.

Nếu n lẻ thì n + 1 chia hết cho 2 thì n + 3 chia hết cho 4 nên n(n + 1)(n + 2)(n +3) chia hết cho 8.

Suy ra n(n + 1)(n + 2)(n +3) chia hết cho 8 với mọi số nguyên n.

+) Nếu n chia hết cho 3 thì n(n + 1)(n + 2)(n + 3) chia hết cho 3.

Nếu n chia cho 3 dư 1 thì n có dạng n = 3k + 1. Khi đó n + 2 = 3k + 3 = 3(k+1) chia hết cho 3 nên n(n + 1)(n + 2)(n + 3) chia hết cho 3.

Nếu n chia cho 3 dư 2 thì n có dạng n = 3k + 2. Khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3 nên n(n + 1)(n + 2)(n + 3) chia hết cho 3.

Suy ra n(n + 1)(n + 2)(n + 3) chia hết cho 3 với mọi số nguyên n.

Vậy n(n + 1)(n + 2)(n + 3) chia hết cho 2 và 3 với mọi số nguyên n. 

Lời giải

a) Ta có 2x – 1 là bội của x – 3 nên 2x – 1 chia hết cho x – 3.

Ta lại có 2x – 1 = 2x – 6 + 5 = 2(x – 1) + 5.

Vì 2(x – 1) chia hết cho x – 1 nên 5 phải chia hết cho x – 1 hay x – 1 thuộc Ư(5) = {1; -1; 2; -2}.

Suy ra x thuộc {2; 0; 3; -1}.

Vậy x ∈ {2; 0; 3; -1}.

b) Ta có 2x + 1 là ước của 3x + 2 nên 3x + 2 chia hết cho 2x + 1

Suy ra: 2(3x + 2) = 6x + 4 = 3(2x + 1) + 1 cũng chia hết cho 2x + 1

Mà 3(2x + 1) chia hết cho 2x + 1 nên 1 cũng phải chia hết cho 2x + 1 hay 2x + 1 thuộc Ư(1) = {1; -1}.

Suy ra x thuộc {0; -1}.

Vậy x ∈ {0; -1}.

c)

+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:

(x – 4)(x + 2) + 6 = (3k – 4)(3k + 2) + 6 không chia hết cho 3 nên không là bội của 9.

+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:

(x – 4)(x + 2) + 6 = (3k – 3)(3k + 3) + 6 = 9(k – 1)(k + 3) + 6.

Vì 9(k – 1)(k + 3) chia hết cho 9 mà 6 không chia hết cho 9 nên 9(k – 1)(k + 3) + 6 không chia hết cho 9 hay (x – 4)(x + 2) + 6 không là bội của 9.

+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:

(x – 4)(x + 2) + 6 = (3k – 2)(3k + 4) + 6 không chia hết cho 3 nên không là bội của 9.

Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.

d)

+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:

(x – 2)(x + 5) + 11 = (3k – 2)(3k + 5) + 11 không chia hết cho 3 nên không là bội của 9.

+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:

(x – 2)(x + 5) + 6 = (3k – 1)(3k + 6) + 6 = 3(3k – 1)(k + 2) + 11.

Vì 3(3k – 1)(k + 2) chia hết cho 3 mà 11 không chia hết cho 3 nên 3(3k – 1)(k + 2) + 11 không chia hết cho 3 nên không là bội của 9.

+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:

(x – 2)(x + 5) + 11 = (3k – 4)(3k + 7) + 11 không chia hết cho 3 nên không là bội của 9.

Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP