Câu hỏi:

12/07/2024 1,511

 Chọn câu sai:

a) 11.44 + 16 chia hết cho 4 nên chia hết cho 2;

b) 24.8 – 17 chia hết cho 3;

c) 136.3 – 2.34 chia hết cho 9;

d) Tích của ba số tự nhiên liên tiếp chia hết cho 2, cho 3.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Phát biểu a) là đúng vì 11.44+ 16 chia hết cho 4 mà 4 lại chia hết cho 2 nên 11. 44 + 16 chia hết cho 2.

b) Vì 24 chia hết cho 3 nên 24.8 chia hết cho 3

Mà 17 không chia hết cho 3

Nên theo tính chất chia hết của một hiệu thì 24.8 – 17 không chia hết cho 3.

Do đó phát biểu b) sai.

c) Ta có: 2. 34 = 2. 32.32  = 2.9.9 chia hết cho 9;

Mà 136.3 không chia hết cho 9

Nên theo tính chất chia hết của một hiệu thì 136.3 – 2.34 không chia hết cho 9.

Do đó phát biểu c) là sai.

d) Gọi ba số tự nhiên liên tiếp là n, n + 1, n + 2 với n là số tự nhiên.

+) Quan hệ chia hết của n(n + 1)(n + 2) với 2

- Nếu n là số chẵn thì n chia hết cho 2. Suy ra n(n + 1)(n + 2) chia hết cho 2.

- Nếu n là số lẻ thì n + 1 là số chẵn nên n + 1 chia hết cho 2. Suy ra n(n + 1)(n + 2) chia hết cho 2.

Do đó n(n + 1)(n + 2) chia hết cho 2 với mọi số tự nhiên n (1).

+) Quan hệ chia hết của n(n + 1)(n + 2) với 3

- Nếu n chia hết cho 3 thì n(n + 1)(n + 2) chia hết cho 3.

- Nếu n chia cho 3 dư 1 thì n = 3k + 1 với k là số tự nhiên. Khi đó n + 2 = 3k + 3 = 3(k + 1) chia hết cho 3. Suy ra n(n + 1)(n + 2) chia hết cho 3.

- Nếu n chia cho 3 dư 2 thì n = 3k + 2 với k là số tự nhiên. Khi đó n + 1 = 3k + 3 = 3(k + 1) chia hết cho 3. Suy ra n(n + 1)(n + 2) chia hết cho 3.

Do đó n(n + 1)(n + 2) chia hết cho 3 với mọi số tự nhiên n (2).

Từ (1) và (2) suy ra n(n + 1)(n + 2) chia hết cho 2 và 3 với mọi số tự nhiên n hay tích của ba số tự nhiên liên tiếp chia hết cho 2, cho 3.

Suy ra phát biểu d) là đúng.

Vậy phát biểu sai là b) và c).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khi chia số tự nhiên M cho 12 ta được số dư là 10. Hỏi M có chia hết cho 2, cho 3, cho 4 hay không?

Xem đáp án » 12/07/2024 1,772

Câu 2:

a) Tìm số tự nhiên a nhỏ hơn 10 để P = 15.16.17 + a vừa chia hết cho 3 vừa chia hết cho 10.

b) Tìm số tự nhiên a lớn hơn 90 và nhỏ hơn 100 để 125 – a chia hết 5

Xem đáp án » 12/07/2024 1,413

Câu 3:

 Cho B = 121 – 110 + 99 – 88 + … + 11 + 1. Không thực hiện phép tính, hãy cho biết B có chia hết cho 11 hay không.

Xem đáp án » 12/07/2024 1,288

Câu 4:

 Viết kết quả phép chia dưới dạng a = b.q + r, với 0≤ r < b

a) 92 727:6 315;

b) 589 142:1 093;

c) 68 842: 6 329.

Xem đáp án » 12/07/2024 1,269

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store