Câu hỏi:
11/07/2024 1,850Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Vì 2n + 1 là số chính phương. Mà 2n + 1 là số lẻ (do 2n là số chẵn)
Suy ra 2n + 1 chia cho 8 dư 1.
Do đó n chia hết cho 4.
Suy ra n + 1 là số lẻ
Nên n + 1 chia cho 8 dư 1.
Vậy n chia hết cho 8. (1)
Mặt khác:
2n + 1 + n + 1 = 3n + 2 chia cho 3 dư 2.
Do đó (n + 1) + (2n + 1) chia cho 3 dư 2.
Mà n + 1 và 2n + 1 là các số chính phương lẻ
Suy ra n + 1 và 2n + 1 chia cho 3 dư 1.
Nên n chia hết cho 3. (2)
Từ (1) và (2) suy ra n đều chia hết cho cả 3 và 8.
Mà (3; 8) = 1 (3 và 8 là hai số nguyên tố cùng nhau)
Vậy n chia hết cho 24.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
a) Chứng minh: Tứ giác AEHF là hình chữ nhật.
b) Gọi P là điểm đối xứng của H qua AB. Tứ giác APEF là hình gì? Vì sao?
c) Đường thẳng đi qua C và song song với BP, cắt tia PA tại Q. Chứng minh: Q đối xứng với H qua F.
Câu 2:
a) x(5 – 6x) + (2x – 1)(3x + 4) = 6;
b) x2(x – 2021) – x + 2021 = 0;
c) 2x2– 3x – 5 = 0.
Câu 3:
a) Thực hiện phép chia đa thức A cho đa thức B. Xác định đa thức thương M và phần dư N.
b) Tìm tất cả các số nguyên x để giá trị của đa thức A chia hết cho giá trị của đa thức B (trên ℤ).
Câu 4:
Phân tích các đa thức sau thành nhân tử:
a) A = 4x3– 8x2+ 4x;
b) B = y2+ x2– 16 – 2xy;
c) C = x3– 8 – 3(2 – x).
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 2)
Đề kiểm tra Cuối kì 1 Toán 8 CTST có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
về câu hỏi!