Câu hỏi:

27/03/2022 891

Cho hàm số f(x) liên tục trên R và có đồ thị như hình vẽ dưới đây.

 Cho hàm số  f(x) liên tục trên R  và có đồ thị như hình vẽ dưới đây. Số nghiệm của phương trình   là  (ảnh 1)

Số nghiệm của phương trình f3(x)+3f2(x)+4f(x)+23f(x)+1=3f(x)+2 là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dựa vào đồ thị ta nhận thấy 3f(x)+1>0,x.

Do đó f3(x)+3f2(x)+4f(x)+23f(x)+1=3f(x)+2

f3(x)+3f2(x)+3f(x)+1+f(x)+1=3f(x)+1(3f(x)+1+1)

[f(x)+1]3+[f(x)+1]=[3f(x)+1]3+3f(x)+1 (1).

Xét hàm số f(t)=t3+t với t.

Ta có f'(t)=3t2+1>0,t. Do đó f(t) đồng biến trên .

Khi đó (1)f(x)+1=3f(x)+1f2(x)+2f(x)+1=3f(x)+1.

f2(x)f(x)=0[f(x)=0f(x)=1.

 Cho hàm số  f(x) liên tục trên R  và có đồ thị như hình vẽ dưới đây. Số nghiệm của phương trình   là  (ảnh 2)
Dựa vào hình vẽ ta suy ra phương trình f(x)=0 có 3 nghiệm và phương trình f(x)=1 có 6 nghiệm (các nghiệm này không trùng các nghiệm của phương trình f(x)=0).

Vậy phương trình đã cho có 9 nghiệm.

Đáp án B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: y'=2x.f'(x23).

y'=02x.f'(x23)=0[x=0f'(x23)=0[x=0x23=2x23=1x23=1[x=0x=±1x=±2

Trong 5 nghiệm của phương trình y'=0, hai nghiệm x=2 và x=2 là nghiệm bội chẵn nên khi x qua đó đạo hàm không bị đổi dấu.

Do đó hàm số y=f(x23) có 3 điểm cực trị.

Đáp án D

Lời giải

Ta có: g'(x)=2f'(x)+2x4.

g'(x)=0f'(x)=x2.

Vẽ đường thẳng y=x2 và đồ thị y=f'(x) trên cùng hệ trục tọa độ ta được hình sau:

Cho hàm số y=f(x) xác định và liên tục trên đoạn  (1;5) có đồ thị của y=f'(x)được cho như hình bên dưới (ảnh 2)

Dựa vào đồ thị ta thấy: f'(x)=x2[x=0x=a(a(1;2))x=3x=b(b(4;5)).

Để hàm số g(x) đồng biến khi và chỉ khi g'(x)>02f'(x)+2x4>0f'(x)<x2.

Nhìn đồ thị ta thấy f'(x)<x2,x(a;3) và x(b;5)g(x) đồng biến trên khoảng (2;3).

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay