Câu hỏi:

29/03/2022 6,922

Cho hàm số f(x)=ax4+bx3+cx2+dx+e,(a0) có đồ thị của đạo hàm f'(x) như hình vẽ.

Cho hàm số y=ax^4 + bx^3 + cx^2 + dx+ e có đồ thị của đạo hàm f'(x)  như hình vẽ. Biết rằng e>n. Số điểm cực trị của hàm số   bằng (ảnh 1)

Biết rằng e>n. Số điểm cực trị của hàm số y=f'(f(x)2x) bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: y'=(f'(x)2)f''[f(x)2x].

y'=0(f'(x)2)f''[f(x)2x]=0[f'(x)2=0             (1)f''[f(x)2x]=0   (2)

Xét phương trình (1)f'(x)=2.

 Cho hàm số y=ax^4 + bx^3 + cx^2 + dx+ e có đồ thị của đạo hàm f'(x)  như hình vẽ. Biết rằng e>n. Số điểm cực trị của hàm số   bằng (ảnh 2)

Từ đồ thị ta có phương trình (1) có 3 nghiệm phân biệt x1,x2,x3(x1<m<x2=0<n<x3).

Xét phương trình (2).

Trước hết ta có: f'(x)=4ax3+2bx2+2cx+d.

                          f'(0)=2d=2.

Suy ra: f(x)=ax4+bx3+cx2+2x+e.

(2)f"[f(x)2x]=0[f(x)2x=mf(x)2x=n[ax4+bx3+cx2+e=max4+bx3+cx2+e=n

[ax4+bx3+cx2=me (2a)ax4+bx3+cx2=ne (2b).

Số nghiệm của hai phương trình (2a) và (2b) lần lượt bằng số giao điểm của hai đường thẳng y=me và y=ne (trong đó me<ne<0) với đồ thị hàm số g(x)=ax4+bx3+cx2.

      g'(x)=4ax3+3bx2+2cx

      g'(x)=04ax3+3bx2+2cx=04ax3+3bx2+2cx+2=2

                      f'(x)=2[x=x1<0x=x2=0x=x3>0

Từ đồ thị hàm số y=f'(x) suy ra:

+) limxf'(x)=+ nên a<0 nên limxg(x)=,limx+g(x)=.

Bảng biến thiên của hàm số y=g(x):

Cho hàm số y=ax^4 + bx^3 + cx^2 + dx+ e có đồ thị của đạo hàm f'(x)  như hình vẽ. Biết rằng e>n. Số điểm cực trị của hàm số   bằng (ảnh 3)


Từ bảng biến thiên suy ra hai phương trình (2a),(2b) mỗi phương trình có hai nghiệm phân biệt (hai phương trình không có nghiệm trùng nhau) và khác x1,x2,x3.

Suy ra phương trình (f'(x)2)f"[f(x)2x]=0 có 7 nghiệm đơn phân biệt. Vậy hàm số y=f'[f(x)2x] có 7 điểm cực trị.
Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm =AD và BC. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là

Xem đáp án » 28/03/2022 39,323

Câu 2:

Một chất điểm chuyển động theo phương trình S=t3+3t22, trong đó t tính bằng giây và S tính theo mét. Vận tốc lớn nhất của chuyển động chất điểm đó là

Xem đáp án » 29/03/2022 10,912

Câu 3:

Cho hàm số y=f(x) liên tục trên  và có bảng biến thiên như sau:

Cho hàm số y=f(x) liên tục trên R và có bảng biến thiên như sau: Hàm số 1/3*[(fx)^3-f(x)^2] đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số y=13(f(x))3(f(x))2 đồng biến trên khoảng nào dưới đây?

Xem đáp án » 29/03/2022 4,043

Câu 4:

Một nhóm học sinh gồm có 4 nam và 5 nữ, chọn ngẫu nhiên ra 2 bạn. Tính xác suất để 2 bạn được chọn có 1 nam và 1 nữ.

Xem đáp án » 28/03/2022 3,613

Câu 5:

Gọi M,mlần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=13x32x2+3x13trên đoạn [0;2].Tính tổng S=M+m.

Xem đáp án » 28/03/2022 3,410

Câu 6:

Cho hình chóp đều S.ABCcó cạnh đáy bằng a3.Tính khoảng cách từ điểm Ađến (SBC)biết thể tích khối chóp S.ABCbằng a364.

Xem đáp án » 29/03/2022 3,241

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store