Câu hỏi:

05/04/2022 2,344

Trong không gian Oxyz, cho A1;0;0,B0;1;0,C0;0;1. Gọi P là mặt phẳng chứa cạnh BC và vuông góc với (ABC). (C) là đường tròn đường kính BC nằm trong mặt phẳng (P). Gọi S là một điểm bất kì nằm trên (C) khác B, C. Khi đó khoảng cách từ tâm mặt cầu ngoại tiếp tứ diện S.ABC đến mặt phẳng Q:2x3y+z+1=0 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C.

Ta có phương trình mặt phẳng ABC x+y+z=1 và 1 vectơ pháp tuyến là n1=1;1;1.

BC=0;1;1. Một vectơ pháp tuyến của (P) là n2=n1,BC=2;1;1.

Suy ra phương trình mặt phẳng (P) là 2xyz+1=0.

Gọi H là trung điểm BC, I là tâm mặt cầu ngoại tiếp tứ diện S.ABC 

ta có H0;12;12 và IH vuông góc với mặt phẳng (P). Như vậy phương trình đường thẳng IH là x=2ty=12tz=12t.

Gọi I2t;12t;12tIH, ta có

IA=IB2t12+t122+t122=2t2+t+122+t122t=16I13;13;13.

 

Khi đó khoảng cách từ I đến mặt phẳng (Q) bằng dI,Q=2.133.13+13+122+32+12=114.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C.

Do Fx=x3 là một nguyên hàm của hàm số f(x) nên

I=132fxdx=2xFx31=2xx331=22

Câu 2

Lời giải

Chọn A.

fxdx=2x+1x+12dx=2x+11x+12dx=2x+11x+12dx=2lnx+1+1x+1+C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP