Câu hỏi:

06/04/2022 1,590

Một sóng hình sin đang truyền trên một sợi dây, theo chiều dương của trục Ox. Hình vẽ mô tả hình dạng của sợi dây ở các thời điểm t1và t2= t1+ 0,3s. Chu kì của sóng là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ đồ thị dao động sóng ta có: \[\Delta x{\rm{ }} = {\rm{ }}3\]ô; \[\lambda {\rm{ }} = {\rm{ }}8\]ô

Vận tốc truyền sóng:

\[v = \frac{{{\rm{\Delta }}x}}{{{\rm{\Delta }}t}} = \frac{{3\^o }}{{0,3}}\]

Chu kì dao động sóng:

\[T = \frac{\lambda }{v} = \frac{{8\^o }}{{\frac{{3\^o }}{{0,3}}}} = 0,8{\rm{s}}\]

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bước sóng:

\[\lambda = vT = 1.0,2 = 0,2m\]

Độ lệch pha:

Khi điểm M ở đỉnh sóng, điểm N ở vị trí cân bằng đang đi lên

Theo hình vẽ thì khoảng cách MN

\[MN = \frac{3}{4}\lambda + k\lambda \] với  k = 0;1;2;...

\[0,42 < MN = \frac{3}{4}\lambda + k\lambda < 0,60 \to 1,35 < k < 2,25\]

→k = 2

\[ \to MN = \frac{3}{4}\lambda + 2\lambda = 0,55m = 55cm\]

Đáp án cần chọn là: B

Câu 2

Sóng truyền từ điểm M đến điểm O rồi đến điểm N trên cùng một phương truyền sóng với tốc độ v = 20m/s . Cho biết tại O dao động có phương trình \[{u_O} = 4cos(2\pi f - \frac{\pi }{2})cm\;\] và tại hai điểm gần nhau nhất cách nhau 6m trên cùng phương truyền sóng thì dao động lệch pha nhau góc \[\frac{{2\pi }}{3}rad\]. Cho ON = 50cm. Phương trình sóng tại N là

Lời giải

+ Độ lệch pha giữa hai điểm gần nhau nhất cách nhau 6m6m trên phương truyền sóng dao động lệch pha nhau \[{\rm{\Delta }}\varphi = \frac{{2\pi d}}{\lambda } = \frac{{2\pi }}{3}\]

\[ \Rightarrow \lambda = \frac{{2\pi .6}}{{\frac{{2\pi }}{3}}} = 18m\]

Lại có: \[\lambda = \frac{v}{f} \Rightarrow f = \frac{v}{\lambda } = \frac{{20}}{{18}} = \frac{{10}}{9}Hz\]

\[ \Rightarrow \omega = 2\pi f = \frac{{20\pi }}{9}\left( {rad/s} \right)\]

+ Phương trình sóng tại N:

\[{u_N} = 4cos\left( {\frac{{20\pi }}{9}t - \frac{\pi }{2} - \frac{{2\pi .ON}}{\lambda }} \right) = 4\cos \left( {\frac{{20\pi }}{9}t - \frac{{5\pi }}{9}} \right)cm\]

chọn đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay