Trong không gian Oxyz, cho hình nón có đỉnh I thuộc mặt phẳng và hình tròn đáy nằm trên mặt phẳng . Mặt phẳng (Q) đi qua điểm và vuông góc với trục của hình nón chia hình nón thành hai phần có thể tích lần lượt là và ( là thể tích của hình nón chứa đỉnh I ). Biết bằng biểu thức đạt giá trị nhỏ nhất khi ,. Khi đó tổng bằng
Dễ thấy , gọi O là tâm của đường tròn đáy hình nón, , từ giả thiết ta có ; suy ra . Gọi M là điểm thuộc đường tròn (O), , do nên . Do đó , (trong đó và lần lượt là bán kính của các đường tròn và ). Đặt , khi đó .
Bồn hoa của một trường X có dạng hình tròn bán kính bằng 8m. Người ta chia bồn hoa thành các phần như hình vẽ dưới đây và có ý định trồng hoa như sau: Phần diện tích bên trong hình vuông ABCD để trồng hoa. Phần diện tích kéo dài từ 4 cạnh của hình vuông đến đường tròn dùng để trồng cỏ. Ở 4 góc còn lại mỗi góc trồng một cây cọ. Biết AB = 4m, giá trồng hoa là 200.000 đ/m2, giá trồng cỏ là 100.000 đ/m2, mỗi cây cọ giá 150.000đ. hỏi cần bao nhiêu tiền để thực hiện việc trang trí bồn hoa đó
về câu hỏi!