Câu hỏi:

09/04/2022 957 Lưu

Biết rằng giá trị lớn nhất của hàm số f(x)=x3x2+m2+1x4m7 trên đoạn [0; 2] đạt giá trị nhỏ nhất khi m=m0.Khẳng định nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số y=x3x2+m2+1x4m7 trên đoạn [0; 2]

Ta có: y'=3x22x+m2+1

Δ'=123m2+1=13m23=3m22<0 với m.

y'>0 với mọi m.

 hàm số y=x3x2+m2+1x4m7 luôn đồng biến trên đoạn [0; 2]

max0;2fx=maxf0;f2=max4m+7;2m24m1.

Bất phương trình: 4m+72m24m14m+722m24m12

4m+722m24m1204m+72m2+4m+14m+7+2m24m10

2m2+8m+82m2+602m2+8m+80 (vì 2m2+6>0 với m)

m24m40222m2+22.

Ta xét hai trường hợp sau:

* Trường hợp 1: Nếu 222m22 thì max0;2fx=4m+7.

Ta có: min4m+7=4222+7=1582 khi m=222.

* Trường hợp 2: Nếu m222 hoặc m2+22 thì max0;2fx=2m24m1.

Xét hàm số hm=2m24m1 trên D=;2222+22;+.

Ta có: h'm=4m4=04m=4m=1.

Bảng biến thiên:

Biết rằng giá trị lớn nhất của hàm số f(x) = |x^3 - x^2 + (m^2 + 1)x - 4m - 7| (ảnh 1)


minDhm=minh222;h2+22=h222=1582 khi m=222.

Vậy m0=2221;0

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đây là bài toán vay vốn trả góp.

Áp dụng công thức tính số tiền còn lại sau n tháng vay n* là:

Sn=A1+rnX1+rn1r.

Trong đó số tiền vay là A = 500 triệu đồng, lãi suất r = 0,8%tháng, số tiền trả hàng tháng là X = 10 triệu đồng. Ta có Sn=5001+0,8%n10.1+0,8%n10,8%

Để sau đúng n tháng hết nợ thì Sn=05001+0,8%n10.1+0,8%n10,8%=0.

1+0,8%n500100,8%=100,8%

1+0,8%n=53

n=log1,0085364,11

Vậy sau 65 tháng, anh A trả hết nợ ngân hàng.

Chọn D.

Lời giải

Ta thấy f'(x) đổi dấu 2 lần nên hàm số y = f(x) có 2 điểm cực trị.

Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP