Câu hỏi:

25/04/2022 5,437 Lưu

Cho hình chóp \(S.ABCD\) có \(SA = a,SA \bot \left( {ABCD} \right),\) đáy \(ABCD\) là hình vuông. Gọi \(M\) là trung điểm của \(AD,\) góc giữa \(\left( {SBM} \right)\) và mặt đáy bằng \({45^0}.\) Tính khoảng cách từ \(D\) đến mặt phẳng \(\left( {SBM} \right).\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp \(S.ABCD\) có \(SA = a,SA \bot \left( {ABCD} \right),\) đáy \(ABCD\) là hình vuông. Gọi \(M\) là trung điểm của \(AD,\) góc giữa \(\left( {SBM} \right)\) và mặt đáy bằng \({45^0 (ảnh 1)

Ta có:

\(\left( {SBM} \right) \cap \left( {ABCD} \right) = BM\)

Kẻ \(AH \bot BM \Rightarrow \) Góc giữa (SBM) và mặt đáy là \(\widehat {SHA}\) và \(\widehat {SHA} = {45^0}.\)

Do đó \(\Delta SAH\) là tam giác vuông cân, \(SH = a\sqrt 2 .\)

Kẻ \(AK \bot SH \Rightarrow d\left( {A,\left( {SBM} \right)} \right) = AK = \frac{{a\sqrt 2 }}{2}.\)

Vì \(M\) là trung điểm của \(AD\) nên \(d\left( {D,\left( {SBM} \right)} \right) = d\left( {A,\left( {SBM} \right)} \right) = \frac{{a\sqrt 2 }}{2}\)

Đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(y' = \frac{{1 - m}}{{{{\left( {x + 1} \right)}^2}}}\)

TH1: \(m = 1 \Rightarrow y = 1\) loại

TH2: \(m >1\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{1 + m}}{2} + \frac{{2 + m}}{3} = \frac{{16}}{3} \Leftrightarrow m = 5\) (thỏa mãn)

TH3: \(m < 1\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{2 + m}}{3} + \frac{{1 + m}}{2} = \frac{{16}}{3} \Leftrightarrow m = 5\) (loại)

Vậy \(m = 5\) thỏa mãn.

Đáp án A.

Lời giải

\(y' = \frac{1}{2} - \frac{1}{{2\sqrt {x + 2} }} = \frac{{\sqrt {x + 2} - 1}}{{2\sqrt {x + 2} }}\)

\(y' = 0 \Leftrightarrow \sqrt {x + 1} = 1 \Leftrightarrow x = - 1\)

\(f\left( { - 1} \right) = - \frac{3}{2};f\left( {34} \right) = 11.\)

\(m = - \frac{3}{2};M = 11.S = 3\left( { - \frac{3}{2}} \right) + 11 = \frac{{ - 9}}{2} + 11 = \frac{{13}}{2}.\)

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP