Câu hỏi:

25/04/2022 5,728

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(ABC,SA = 1\) và đáy \(ABC\) là tam giác đều với độ dài cạnh bằng 2. Tính góc giữa mặt phẳng \(SBC\) và mặt phẳng \(ABC.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(ABC,SA = 1\) và đáy \(ABC\) là tam giác đều với độ dài cạnh bằng 2. Tính góc giữa mặt phẳng \(SBC\) và mặt phẳng \(ABC.\) (ảnh 1)

Gọi

\(I\) là trung điểm của \(BC.\) Khi đó, ta có

BCSABCAI}BC(SIA)BCSI

Ta có \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SI \bot BC\\AI \bot BC\\SI \subset \left( {SBC} \right)\\AI \subset \left( {ABC} \right)\end{array} \right. \Rightarrow \left( {\widehat {\left( {SBC} \right),\left( {ABC} \right)}} \right) = \left( {SI,AI} \right) = \widehat {SIA}\)

\(\tan \widehat {SIA} = \frac{{SA}}{{IA}} = \frac{1}{{\sqrt 3 }}\)

Suy ra \(\widehat {SIA} = {30^0}.\)

Vậy \(\left( {\widehat {\left( {SBC} \right),\left( {ABC} \right)}} \right) = {30^0}.\)

Đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(g'\left( x \right) = \left( {3{x^2} - 3} \right)f'\left( {{x^3} - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 1\\f'\left( {{x^3} - 3x} \right) = 0\end{array} \right.\)

Dựa vào đồ thị ta có \(f'\left( {{x^3} - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^3} - 3x = t\left( { - 2 >t} \right)\\{x^3} - 3x = u\left( { - 2 < u < 0} \right)\left( * \right)\\{x^3} - 3x = v\left( {0 < v < 2} \right)\end{array} \right.\)

Xét \(h\left( x \right) = {x^3} - 3x \Rightarrow h'\left( x \right) = 3{x^2} - 3 = 0 \Leftrightarrow x = \pm 1\) ta có bảng biến thiên sau:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là (ảnh 2)

Dựa vào bảng biến thiên ta được (*) có 7 nghiệm phân biệt khác \( \pm 1\) nên \(g'\left( x \right) = 0\) có 9 nghiệm đơn phân biệt. Vậy hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) có 9 cực trị.

Đáp án B.

Lời giải

\(y' = \frac{1}{2} - \frac{1}{{2\sqrt {x + 2} }} = \frac{{\sqrt {x + 2} - 1}}{{2\sqrt {x + 2} }}\)

\(y' = 0 \Leftrightarrow \sqrt {x + 1} = 1 \Leftrightarrow x = - 1\)

\(f\left( { - 1} \right) = - \frac{3}{2};f\left( {34} \right) = 11.\)

\(m = - \frac{3}{2};M = 11.S = 3\left( { - \frac{3}{2}} \right) + 11 = \frac{{ - 9}}{2} + 11 = \frac{{13}}{2}.\)

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP