Câu hỏi:

25/04/2022 4,742

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽKhẳng định nào trong các khẳng định sau đây là sai? (ảnh 1)

Khẳng định nào trong các khẳng định sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dựa vào đồ thị ta thấy

Hàm số đồng biến trên khoảng từ \(\left( {0;1} \right).\)

Hàm số nghịch biến trên khoảng từ \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right).\)

Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\) và nghịch biến trên khoảng \(\left( {2;3} \right),\) nên hàm số không đồng biến trên khoảng \(\left( {0;3} \right).\)

Đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(g'\left( x \right) = \left( {3{x^2} - 3} \right)f'\left( {{x^3} - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 1\\f'\left( {{x^3} - 3x} \right) = 0\end{array} \right.\)

Dựa vào đồ thị ta có \(f'\left( {{x^3} - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^3} - 3x = t\left( { - 2 >t} \right)\\{x^3} - 3x = u\left( { - 2 < u < 0} \right)\left( * \right)\\{x^3} - 3x = v\left( {0 < v < 2} \right)\end{array} \right.\)

Xét \(h\left( x \right) = {x^3} - 3x \Rightarrow h'\left( x \right) = 3{x^2} - 3 = 0 \Leftrightarrow x = \pm 1\) ta có bảng biến thiên sau:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là (ảnh 2)

Dựa vào bảng biến thiên ta được (*) có 7 nghiệm phân biệt khác \( \pm 1\) nên \(g'\left( x \right) = 0\) có 9 nghiệm đơn phân biệt. Vậy hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) có 9 cực trị.

Đáp án B.

Lời giải

\(y' = \frac{1}{2} - \frac{1}{{2\sqrt {x + 2} }} = \frac{{\sqrt {x + 2} - 1}}{{2\sqrt {x + 2} }}\)

\(y' = 0 \Leftrightarrow \sqrt {x + 1} = 1 \Leftrightarrow x = - 1\)

\(f\left( { - 1} \right) = - \frac{3}{2};f\left( {34} \right) = 11.\)

\(m = - \frac{3}{2};M = 11.S = 3\left( { - \frac{3}{2}} \right) + 11 = \frac{{ - 9}}{2} + 11 = \frac{{13}}{2}.\)

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP