Câu hỏi:

15/05/2022 688

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A\), \(AB = AC = a\), \(AA' = \sqrt 2 a\). Thể tích khối cầu ngoại tiếp hình tứ diện \(AB'A'C\) là

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A\), \(AB = AC = a\), \(AA' = \sqrt 2 a\). Thể tích khối cầu ngoại tiếp hình tứ diện \(AB'A'C\) là (ảnh 1)

Khối cầu ngoại tiếp tứ diện \(AB'A'C\) là khối cầu ngoại tiếp lăng trụ \(BAC.A'B'C'\)

Gọi \(D,E\) lần lượt là trung điểm của \(BC,B'C';O\) là trung điểm của \(DE\)

\( \Rightarrow O\) là tâm khối cầu ngoại tiếp lăng trụ \(BAC.A'B'C'\) (do đáy là \(\Delta ABC\) vuông cân tại \(A)\)

Ta có: \(OD = \frac{{AA'}}{2} = \frac{{a\sqrt 2 }}{2}\) và \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2}} = a\sqrt 2 \Rightarrow AD = \frac{{BC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Bán kính khối cầu ngoại tiếp lăng trụ \(ABC.A'B'C'\) là \(R = OA = \sqrt {A{D^2} + O{D^2}} = \sqrt {{a^2}} = a\)

Vậy thể tích khối cầu cần tính là \(V = \frac{4}{3}\pi {R^3} = \frac{{4\pi {a^3}}}{3}.\)

Đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đường tiệm cận?

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đườ (ảnh 1)

Xem đáp án » 15/05/2022 17,341

Câu 2:

Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được

Xem đáp án » 15/05/2022 7,935

Câu 3:

Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].

Xem đáp án » 15/05/2022 7,159

Câu 4:

Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:

Xem đáp án » 15/05/2022 4,469

Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm f'(x) = 2x - 2x2, mi x 0 . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là

Xem đáp án » 15/05/2022 4,382

Câu 6:

Cho hình chóp \[S.ABCD\] có \[SA \bot \left( {ABCD} \right)\], đáy \[ABCD\] là hình chữ nhật với\[AC = a\sqrt 3 \]và \[BC = a\]. Tính khoảng cách giữa \[SD\] và \[BC\].

Xem đáp án » 15/05/2022 4,116

Câu 7:

Hàm số nào sau đây không có cực trị?

Xem đáp án » 11/04/2022 3,949
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua