Cho hai số thực dương \(a,b\) thỏa mãn \({\log _4}a = {\log _6}b = {\log _9}\left( {a + b} \right).\) Tính \(\frac{a}{b}.\)
A.\(\frac{1}{2}\).
B.\(\frac{{ - 1 + \sqrt 5 }}{2}\).
C.\(\frac{{ - 1 - \sqrt 5 }}{2}\).
D.\(\frac{{1 + \sqrt 5 }}{2}\).
Quảng cáo
Trả lời:

Đặt \({\log _4}a = {\log _6}b = {\log _9}\left( {a + b} \right) = t.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{\log _4}a = t\\{\log _6}b = t\\{\log _9}\left( {a + b} \right) = t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = {4^t}\\b = {6^t}\\a + b = {9^t}\end{array} \right..\)
Ta có \({4^t} + {6^t} = {9^t} \Leftrightarrow {\left( {\frac{4}{9}} \right)^t} + {\left( {\frac{2}{3}} \right)^t} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}{\left( {\frac{2}{3}} \right)^t} = \frac{{ - 1 + \sqrt 5 }}{2}\\{\left( {\frac{2}{3}} \right)^t} = \frac{{ - 1 - \sqrt 5 }}{2}\left( {VN} \right)\end{array} \right. \Leftrightarrow \frac{a}{b} = \frac{{ - 1 + \sqrt 5 }}{2}.\)
Đáp án B
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\(1 \le m < 2.\)
B.\(1 < m \le 2\).
C.\(1 < m < 2\).
D.\(1 \le m \le 2\).
Lời giải
Tập xác định \(D = \mathbb{R}\)
Ta có: \(y' = 3\left( {m - 1} \right){x^2} - 6\left( {m - 1} \right)x + 3.\)
Trường hợp 1: \(m - 1 = 0 \Leftrightarrow m = 1 \Rightarrow y = 3x + 2 \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}.\)
Trường hợp 2: \(m - 1 \ne 0 \Rightarrow y' \ge 0{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m - 1 >0\\\Delta ' \le 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m >1\\9{\left( {m - 1} \right)^2} - 9\left( {m - 1} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >1\\1 \le m \le 2\end{array} \right. \Leftrightarrow 1 < m \le 2.\)
Kết hợp hai trường hợp trên suy ra \(1 < m \le 2.\)
Đáp án D
Câu 2
Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?
A.\(P = {x^{\frac{2}{3}}}.\)
B.\(P = {x^{\frac{1}{4}}}.\)
C.\(P = {x^{\frac{{13}}{{24}}}}.\)
D.\(P = {x^{\frac{1}{2}}}.\)
Lời giải
\(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}} = \sqrt[4]{{x\sqrt[3]{{{x^2}.{x^{\frac{3}{2}}}}}}} = \sqrt[4]{{x\sqrt[3]{{{x^{\frac{7}{2}}}}}}} = \sqrt[4]{{x.{x^{\frac{7}{6}}}}} = \sqrt[4]{{{x^{\frac{{13}}{6}}}}} = {x^{\frac{{13}}{{24}}}}\)
Đáp án C
Câu 3
A.\(A = \frac{1}{2}\).
B.\(A = \frac{1}{{10}}\).
C.\(A = 2\).
D.\(A = 10\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\({45^0}\).
B.\({90^0}\).
C.\({60^0}\).
D.\({30^0}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\(\frac{{2{a^3}\sqrt {15} }}{9}\).
B.\(2{a^3}\sqrt {15} \).
C.\(2{a^3}\).
D.\(\frac{{2{a^3}\sqrt {15} }}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.