Câu hỏi:

25/04/2022 4,755

Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(g'\left( x \right) = \left( {4x - 12} \right).f'\left( {2{x^2} - 12x + m} \right)\)

\( = \left( {4x - 12} \right){\left( {2{x^2} - 12x + m + 1} \right)^2}\left( {2{x^2} - 12x + m} \right)\left( {2{x^2} - 12x + m - 4} \right)\)

Hàm số \(g\left( x \right)\) có đúng 5 điểm cực trị

\( \Leftrightarrow g'\left( x \right)\) đổi dấu 5 lần

\( \Leftrightarrow g'\left( x \right) = 0\) có 5 nghiệm đơn phân biệt

\( \Leftrightarrow \) phương trình \(2{x^2} - 12x + m = 0\) có hai nghiệm phân biệt khác 3 và phương trình \(2{x^2} - 12x + m - 4 = 0\) có hai nghiệm phân biệt khác 3 và các nghiệm này khác nhau

Phương trình \(2{x^2} - 12x + m = 0\) có hai nghiệm phân biệt khác 3 và phương trình \(3{x^2} - 12x + m - 4 = 0\) có hai nghiệm phân biệt khác 3.

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta {'_1} >0\\\Delta {'_2} >0\\{2.3^2} - 12.3 + m \ne 0\\{2.3^2} - 12.3 + m - 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}36 - 2m >0\\36 - 2\left( {m - 4} \right) >0\\m \ne 18\\m \ne 22\end{array} \right. \Leftrightarrow m < 18\)

Với điều kiện \(m < 18\) thì phương trình \(2{x^2} - 12x + m = 0\) có hai nghiệm phân biệt là \(a;b\) và phương trình \(2{x^2} - 12x + m - 4 = 0\) có hai nghiệm phân biệt là \(c,d.\)

Theo Vi-ét ta có \(\left\{ \begin{array}{l}a + b = c + d = 6\\a.b = m\\c.d = m - 4\end{array} \right.\)

Nếu \(a = c\) thì \(b = d\) (vì \(a + b = c + d = 6) \Rightarrow a.b = c.d \Leftrightarrow m = m - 4\) điều này là vô lí

Do đó các nghiệm của hai phương trình \(2{x^2} - 12x + m = 0\) và \(2{x^2} - 12x + m - 4 = 0\) luôn khác nhau.

Mà \(m\) là số nguyên dương nên \(m \in \left\{ {1;2;3;4...17} \right\}.\) Do đó có 17 giá trị \(m\) thỏa mãn bài toán.

Đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)

Xem đáp án » 25/04/2022 26,860

Câu 2:

Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?

Xem đáp án » 25/04/2022 12,468

Câu 3:

Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)

Xem đáp án » 25/04/2022 10,435

Câu 4:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là

Xem đáp án » 25/04/2022 4,960

Câu 5:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)

Xem đáp án » 25/04/2022 3,340

Câu 6:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Số đo góc giữa \(\left( {BA'C} \right)\) và \(\left( {DA'C} \right).\)

Xem đáp án » 25/04/2022 3,063