Câu hỏi:

14/04/2022 10,066

Bất phương trình \({\log _3}(3x - 2) \ge 2\)có tập nghiệm là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[{\log _3}(3x - 2) \ge 2 \Leftrightarrow 3x - 2 \ge 9 \Leftrightarrow x \ge \frac{{11}}{3}.\]

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \({3^{2x - 3}} >27 \Leftrightarrow 2x - 3 >3 \Leftrightarrow 2x >6 \Leftrightarrow x >3\).

Vậy tập nghiệm của bất phương trình đã cho là \(\left( {3\,;\, + \infty } \right)\).

Chọn đáp án D

Câu 2

Lời giải

Xét phương trình hoành độ giao điểm của hai đường là \({x^2} - x = 2x \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right.\).

Vậy \(S = \int\limits_0^3 {\left| {{x^2} - 3x} \right|} {\rm{d}}x = \int\limits_0^3 {\left( {3x - {x^2}} \right)} {\rm{d}}x\), do \({x^2} - 3x \le 0,\forall x \in \left[ {0;3} \right]\).

Chọn đáp án D

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP