Đăng nhập
Đăng ký
14943 lượt thi 50 câu hỏi 90 phút
Câu 1:
Hỏi có bao nhiêu cách xếp bốn bạn An, Bình, Cường, Dũng ngồi vào một bàn học gồm bốn chỗ?
A. \(6\).
B. \(4\).
C. \(1\).
D. \(24\).
Câu 2:
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và \({u_5} = 10\). Tính tổng \(5\) số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\).
A. \({S_5} = 30\).
B. \({S_5} = 12\).
C. \({S_5} = 60\).
D. \({S_5} = 24\).
Câu 3:
Tập nghiệm của bát phương trình \({3^{2x - 3}} >27\) là
A. \(\left( { - \infty \,;\,15} \right)\).
B. \(\left( {15\,;\, + \infty } \right)\).
C. \(\left( { - \infty \,;\,3} \right)\).
D. \(\left( {3\,;\, + \infty } \right)\).
Câu 4:
Thể tích khối lăng trụ có chiều cao bẳng \(2\) và diện tích đáy bằng \(6\) là
A. \(12\).
C. \(8\).
D. \(6\).
Câu 5:
Tập xác định của hàm số \(y = {\log _5}\left( {2x + 1} \right)\) là
A. \(\left[ { - \frac{1}{2}; + \infty } \right)\).
B. \(\left( { - \frac{1}{2}; + \infty } \right)\).
C. \(\left( { - \infty ; - \frac{1}{2}} \right)\).
D. \(\left( { - \infty ; - \frac{1}{2}} \right]\).
Câu 6:
Cho \[f\left( x \right),\,g\left( x \right)\] là hai hàm số liên tục. Khẳng định nào sau đây là sai?
A. \[\int {kf\left( x \right){\rm{d}}x = k\int {f\left( x \right){\rm{d}}x} } \] với \(k \in \mathbb{R}\backslash \left\{ 0 \right\}\).
B. \(\int {\left[ {f\left( x \right)g\left( x \right)} \right]{\rm{d}}x = \int {f\left( x \right){\rm{d}}x.\int {g\left( x \right){\rm{d}}x} } } \).
C. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x = \int {f\left( x \right){\rm{d}}x + \int {g\left( x \right){\rm{d}}x} } } \).
D. \(\int {f'\left( x \right){\rm{d}}x = f\left( x \right) + C} \) với \[C \in \mathbb{R}\].
Câu 7:
Cho hình chóp \(S.ABC\) có \(A'\) và \(B'\) lần lượt là trung điểm của \(SA\) và \(SB\). Biết thể tích khối chóp \(S.A'B'C\) bằng 4. Tính thể tích \(V\) của khối chóp \(S.ABC\).
A. \(V = 12\).
B. \(V = 8\).
C. \(V = 16\).
D. \(V = 4\).
Câu 8:
Cho hình nón có diện tích xung quanh bằng \[4\pi {a^2}\] và bán kính đáy bằng \[a\sqrt 2 \]. Độ dài đường sinh của hình nón đã cho bằng
A. \(2\sqrt 2 a\).
B. \(\sqrt 2 a\) .
C. \(2a\).
D. \(a\).
Câu 9:
Cho khối cầu có thể tích \(V = 972\pi \). Đường kính của khối cầu bằng:
A. 9
B. 10
C. 18
D. 27
Câu 10:
Cho hàm số \(f(x)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. \(\left( { - \infty ;1} \right)\).
B. \(\left( { - 1;3} \right)\).
C. \(\left( {7; + \infty } \right)\).
D. \(\left( { - 1; + \infty } \right)\).
Câu 11:
Cho \[a >0\], \[a \ne 1\]. Biểu thức \[{a^{{{\log }_a}{a^3}}}\] bằng
A. \({a^3}\).
B. \(3\).
C. \({3^a}\).
D. \(3a\) .
Câu 12:
Diện tích xung quanh của hình trụ có bán kính đáy \(r = 5\)cm, chiều cao \(h = 9\) cm là
A. \(45\pi {\rm{ c}}{{\rm{m}}^2}\).
B. \(90\pi {\rm{ c}}{{\rm{m}}^2}\).
C. \(30\pi {\rm{ c}}{{\rm{m}}^2}\).
D. \(15\pi {\rm{ c}}{{\rm{m}}^2}\).
Câu 13:
Cho hàm số \(y = f(x)\) có bảng biến thiên:
Hàm số đã cho có giá trị cực đại là
A. \(x = 0\).
B. \(x = 2\).
C. \(y = 1\).
D. \(y = \frac{4}{3}\).
Câu 14:
Đồ thị hàm số nào dưới đây có dạng như đường cong dưới đây
A. \(y = - {x^3} + 1\).
B. \(y = - 2{x^3} + {x^2}\).
C. \(y = 3{x^2} + 1\).
D. \(y = - 4{x^3} + 1\).
Câu 15:
Đồ thị hàm số \(y = \frac{{3x - 1}}{{3x + 5}}\) có đường tiệm cận đứng là
A. \(x = 3\).
B. \(x = - \frac{5}{3}\).
C. \(y = - \frac{5}{3}\).
D.\(y = 3\).
Câu 16:
Bất phương trình \({\log _3}(3x - 2) \ge 2\)có tập nghiệm là:
A.\(x \le \frac{4}{3}\).
B. \(x \ge \frac{{11}}{3}\).
C.\(x \le \frac{{11}}{3}\).
D.\(x \ge \frac{4}{3}\).
Câu 17:
Đường cong trong hình bên dưới là đồ thị của hàm số nào trong bốn hàm số dưới đây ?
A. \[y\, = \, - \,{x^3}\, + \,3x\, + \,2\].
B. \[y\, = \, - \,{x^3}\, + \,3{x^2}\, - \,2\].
C. \[y\, = {x^3}\, - \,3x\, + \,2\].
Câu 18:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^2 {f\left( x \right)} \,{\rm{d}}x = 9;\int\limits_2^4 {f\left( x \right)\,} {\rm{d}}x = 4\). Tính \(I = \int\limits_0^4 {f\left( x \right)} \,{\rm{d}}x\)?
A. \(I = \frac{9}{4}\).
B. \(I = 36\).
C. \(I = 13\).
D. \(I = 5\).
Câu 19:
Cho số phức \(z = - 2 - 3i\). Điểm biểu diễn của số phức \(z\) trong mặt phẳng tọa độ là:
A. \(M\left( { - 2;3} \right)\).
B. \(M\left( {2; - 3} \right)\).
C. \(M\left( { - 3; - 2} \right)\).
D. \(M\left( { - 2; - 3} \right)\).
Câu 20:
Cho hai số phức \({z_1} = 1 - 3i;{z_2} = 3 + 2i\). Tìm số phức \(z = {z_1}.{z_2}\)
A. \({z_1}.{z_2} = - 3 - 7i\).
B. \({z_1}.{z_2} = 9 - 7i\).
C. \({z_1}.{z_2} = 9 + 7i\).
D. \({z_1}.{z_2} = 7 - 9i\).
Câu 21:
Tập nghiệm của bất phương trình \({3.9^x} - {10.3^x} + 3 \le 0\) có dạng\[S = \left[ {a;b} \right]\], trong đó \[a,b\] là các số nguyên. Giá trị của biểu thức \[5b - 2a\] bằng
A. \(\frac{{43}}{3}\).
B. \(\frac{8}{3}\).
C. \(7\).
D. \(3\).
Câu 22:
Cắt hình trụ \[\left( T \right)\] bằng một mặt phẳng đi qua trục được thiết diện là một hình chữ nhật có diện tích bằng \[20\,{\rm{c}}{{\rm{m}}^2}\]và chu vi bằng \[18\,{\rm{cm}}\]. Biết chiều dài của hình chữ nhật lớn hơn đường kính mặt đáy của hình trụ \[\left( T \right)\]. Diện tích toàn phần của hình trụ là
A. \(30\pi \,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
B. \(28\pi \,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
C. \(24\pi \,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
D. \(26\pi \,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Câu 23:
Trong không gian \[Oxyz\] cho tam giác \[ABC\] có \[A(2;\,2;\,0)\], \[B(1;\,0;\,2)\], \[C(0;\,4;\,4)\]. Viết phương trình mặt cầu có tâm là \(A\) và đi qua trọng tâm \[G\] của tam giác \(ABC\).
A. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = 4\].
B. \[{(x + 2)^2} + {(y + 2)^2} + {z^2} = 5\].
C. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = \sqrt 5 \].
D. \({(x - 2)^2} + {(y - 2)^2} + {z^2} = 5\).
Câu 24:
Trong không gian \[Oxyz\], cho mặt phẳng\((\alpha ):2x + y - z + 1 = 0\). Vectơ nào sau đây không là vectơ pháp tuyến của mặt phẳng \[(\alpha )\]?
A. \[\overrightarrow {{n_4}} \left( {4;2; - 2} \right)\].
B. \[\overrightarrow {{n_2}} \left( { - 2; - 1;1} \right)\].
C. \[\overrightarrow {{n_3}} \left( {2;1;1} \right)\].
D. \[\overrightarrow {{n_1}} \left( {2;1; - 1} \right)\].
Câu 25:
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y - z = 0\) và mặt phẳng \(\left( Q \right):2x - y + z = 0\). Giao tuyến của mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) có phương trình là
A. \(\frac{x}{3} = \frac{y}{{ - 3}} = \frac{z}{{ - 5}}\).
B. \(\frac{x}{1} = \frac{y}{3} = \frac{z}{{ - 5}}\).
C. \(\frac{{x + 1}}{{ - 1}} = \frac{y}{3} = \frac{{z + 2}}{5}\).
D. \(\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{{ - 5}}\).
Câu 26:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A\), \(AB = 2a\). Tính khoảng cách giữa đường thẳng \(AA'\) và mặt bên \(\left( {BCC'B'} \right)\).
A. \(a\sqrt 2 \).
B. \(a\).
C. \(2a\sqrt 2 \).
D. \(\frac{{a\sqrt 2 }}{2}\).
Câu 27:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Gọi \(M\), \(N\) là các điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Tính độ dài đoạn \(MN\).
A. \(2\sqrt 3 \).
B. \(5\sqrt 2 \).
C. \(20\).
D. \(2\sqrt 5 \).
Câu 28:
Tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{x - 2}}{{x + 5}}\) trên đoạn \(\left[ { - 1\,;\,3} \right]\).
A. \(\frac{5}{{12}}\).
B. \(\frac{3}{4}\).
C. \(\frac{1}{8}\).
D. \( - \frac{3}{4}\).
Câu 29:
Có bao nhiêu giá trị nguyên của tham số \(m\) trên \(\left[ { - 2020;{\rm{ }}2020} \right]\) để hàm số \(y = {\log _{2020}}\left( {{x^2} - 2x - m + 1} \right)\) có tập xác định là \(\mathbb{R}\)?
A. \(2019\).
B. \(2021\).
C. \(2020\).
D. \(2022\).
Câu 30:
Cho hàm số \[y = f(x)\] xác định trên \[\mathbb{R}\backslash \left\{ 0 \right\}\]và liên tục trên từng khoảng xác định. Biết hàm số có bảng biến thiên như hình vẽ dưới
Tìm tâp hợp các giá trị của tham số \[m\]để phương trình \[f(x) = m\]có hai nghiệm thực phân biệt.
A. \[\left( { - 4;1} \right) \cup \left\{ 3 \right\}\].
B. \[\left( { - 4;1} \right] \cup \left\{ 3 \right\}\].
C. \[\left( { - \infty ;1} \right]\].
D. \[\left( { - 4;1} \right)\].
Câu 31:
Bất phương trình sau có tất cả bao nhiêu nghiệm nguyên \({4^x} - {33.2^x} + 32 \le 0\).
A. \(31\).
B. \(32\).
C. \(5\).
Câu 32:
Trong không gian, cho hình thang vuông tại \(A\) và \(D\) biết \(AB = 2a;\,AD = CD = a\). Khi quay hình thang \(ABCD\) xung quanh cạnh \(AD\) thì đường gấp khúc \(ABCD\) tạo thành một khối tròn xoay. Thể tích của khối tròn xoay đó là
A. \[\frac{{3\pi {a^3}}}{4}\].
B. \(\frac{{7\pi {a^3}}}{3}\).
C. \(\frac{{4\pi {a^3}}}{3}\).
D. \(3\pi {a^3}\).
Câu 33:
Xét \(\int\limits_0^{\frac{\pi }{2}} {\sin x\sqrt {3 + \cos x} } {\rm{d}}x\), nếu đặt \(t = \sqrt {3 + \cos x} \) thì \(\int\limits_0^{\frac{\pi }{2}} {\sin x\sqrt {3 + \cos x} } {\rm{d}}x\) bằng
A. \(2\int\limits_{\sqrt 3 }^2 {{t^2}{\rm{d}}t} \).
B. \( - 2\int\limits_{\sqrt 3 }^2 {{t^2}{\rm{d}}t} \).
C. \(2\int\limits_{\sqrt 3 }^2 {t\sqrt {{t^2} - 3} {\rm{d}}t} \).
D. \[ - 2\int\limits_{\sqrt 3 }^2 {t\sqrt {{t^2} - 3} {\rm{d}}t} \].
Câu 34:
Diện tích \(S\) của hình phẳng giới hạn bởi các đường \(y = {x^2} - x\) và \(y = 2x\) được tính bởi công thức nào dưới đây?
A. \(S = \int\limits_{ - 1}^1 {\left( {{x^2} + x} \right)} {\rm{d}}x\).
B. \(S = \int\limits_1^{ - 1} {\left( {{x^2} + x} \right)} {\rm{d}}x\).
C. \(S = \int\limits_0^3 {\left( {{x^2} - 3x} \right)} {\rm{d}}x\).
D. \(S = \int\limits_0^3 {\left( {3x - {x^2}} \right)} {\rm{d}}x\).
Câu 35:
Trong mặt phẳng với hệ tọa độ \(Oxy\), hai số phức \[z\] và \(z'\) lần lượt được biểu diễn bởi hai điểm \(M\)và \(M'\). Hãy chọn khẳng định sai trong các khẳng định dưới đây.
A. Độ dài của véc tơ \(\overrightarrow {OM} \) được gọi là mô đun của số phức \[z\].
B. Độ dài của đoạn thẳng \(MM'\) bằng mô đun của số phức \(z - z'\).
C. Số phức \(z\) được gọi là số phức liên hợp của số phức \(z'\) khi và chỉ khi điểm \(M\) đối xứng với điểm \(M'\) qua trục \(Oy\).
D. Số phức \(z\) được gọi là số phức đối của số phức \(z'\) khi và chỉ khi điểm \(M\) đối xứng với điểm \(M'\) qua gốc tạo độ \(O\).
Câu 36:
Gọi \({z_1}\) là nghiệm phức có phần ảo âm của phương trình \({z^2} - 2z + 5 = 0\). Tìm tọa độ điểm biểu diễn số phức \(\frac{{7 - 4i}}{{{z_1}}}\) trên mặt phẳng phức?
A. \(P\left( {3;\,\,2} \right)\).
B. \(N\left( {1;\,\, - 2} \right)\).
C. \(Q\left( {3; - 2} \right)\).
D. \(M\left( {1;\,\,2} \right)\).
Câu 37:
Đường thẳng đi qua điểm \(M\left( {3;2;1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x - 5y + 4 = 0\) có phương trình là
A. \(\left( d \right):\left\{ \begin{array}{l}x = 3 - 2t\\y = 2 - 5t\\z = 1\end{array} \right.\).
B. \(\left( d \right):\left\{ \begin{array}{l}x = 3 + 2t\\y = 2 + 5t\\z = 1\end{array} \right.\).
C. \(\left( d \right):\left\{ \begin{array}{l}x = 3 + 2t\\y = 2 - 5t\\z = t\end{array} \right.\).
D. \(\left( d \right):\left\{ \begin{array}{l}x = 3 + 2t\\y = 2 - 5t\\z = 1\end{array} \right.\)
Câu 38:
Trong không gian \[Oxyz\], mặt phẳng \[\left( {Oyz} \right)\]có phương trình là
A. \[x = 0\].
B. \[x + y + z = 0\].
C. \[y = 0\].
D. \[z = 0\].
Câu 39:
Có 9 chiếc nghế được xếp thành một hàng ngang. Xếp ngẫu nhiên 9 học sinh gồm 5 học sinh lớp A, 3 học sinh lớp B và 1 học sinh lớp C ngồi vào hàng ghế đó sao cho mỗi ghế có đúng một học sinh. Xác xuất để học sinh lớp C ngồi giữa hai học sinh lớp B là:
A. \(\frac{1}{{24}}\).
B. \(\frac{1}{{36}}\).
C. \(\frac{1}{{12}}\).
D. \(\frac{1}{6}\).
Câu 40:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang vuông tại \[A;\;B\]. Gọi \[G\] là trọng tâm tam giác \[SAB\]. Biết \[SA = a\sqrt 6 \] và vuông góc với mặt đáy \[(ABCD)\],\[AB = BC = \frac{1}{2}AD = a\]. Tính theo \[a\] khoảng cách từ \[G\] đến mặt phẳng \[\left( {SCD} \right)\].
A. \[\frac{{a\sqrt 6 }}{4}\].
B. \[\frac{{a\sqrt 2 }}{4}\].
C. \[\frac{{2a\sqrt 6 }}{3}\].
D. \[\frac{{3a\sqrt 2 }}{4}\]
Câu 41:
Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 2} \right){x^2} + \left( {8m + 1} \right)x\] đồng biến trên \(\mathbb{R}\).
A. \(29\).
B. \(28\).
C. \(30\).
D. \(27\).
Câu 42:
Cường độ ánh sáng đi qua môi trường nước biển giảm dần theo công thức \(I = {I_0}.{e^{ - \mu x}}\), với \({I_0}\) là cường độ ánh sáng lúc ánh sáng bắt đầu đi vào môi trường nước biển và \[x\] là độ dày của môi trường đó (\[x\] tính theo đơn vị mét). Biết rằng môi trường nước biển có hằng số hấp thụ là \[\mu = 1,4\]. Hỏi ở độ sâu \[25\] mét thì cường độ ánh sáng giảm đi bao nhiêu lần so với cường độ ánh sáng lúc ánh sáng bắt đầu đi vào nước biển?
A. \[{e^{34}}\] lần.
B. \({e^{35}}\) lần.
C. \({e^{ - 35}}\) lần.
D. \[{e^{ - 34}}\] lần.
Câu 43:
Cho hàm số bậc ba \[y = f\left( x \right)\] có đồ thị như hình vẽ.
Phương trình \[f\left( {2\cos x} \right) = 2\] có bao nhiêu nghiệm \[x \in \left[ {0;3\pi } \right]\]?
A. 3
B. 4.
C. 5.
D. 6.
Câu 44:
Cho hình nón có chiều cao \[{\rm{h}} = 20(cm)\], đường tròn đáy có tâm \[O\] bán kính đường tròn đáy \[r = 25(cm)\]. Một thiết diện đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm \[A,B\]sao cho \[AB = 40(cm)\]. Diện tích mặt cầu tâm\[O\] tiếp xúc với thiết diện bằng
A. \[S = 576\pi (c{m^2})\].
B. \[S = 567\pi (c{m^2})\].
C. \[S = 675\pi (c{m^2})\].
D. \[S = 2304\pi (c{m^2})\]
Câu 45:
Cho hàm số \[f(x)\]có \[f'(x) = \sin (2x).co{s^2}(4x)\]và \[f(0) = 0\]. Tính \[\int\limits_0^{\frac{\pi }{2}} {f(x)dx} \] bằng:
A. \[\frac{{7\pi }}{{60}}\].
B. \[\frac{{7\pi }}{{50}}\].
C. \[\frac{\pi }{{10}}\].
D. \[\frac{{7\pi }}{{30}}\].
Câu 46:
Cho hàm số \(y = \frac{{2x - 2}}{{x + 1}}\left( C \right)\). Tìm \(m\) để đường thẳng \(\left( d \right):y = 2x + m\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(A,\,B\) thỏa mãn: \(AB = \sqrt 5 \).
A.\(\left[ \begin{array}{l}m = 10\\m = - 2\end{array} \right.\).
B. \(m = 10\).
C. \(m = - 2\).
D. \(m \in \left( { - 2;10} \right)\).
Câu 47:
Cho\[x\], \[y\], \[z\] là các số thực khác \[0\]thỏa mãn\[{2^x} = {3^y} = {6^{ - z}}\]. Tính giá trị biểu thức \[M = xy + yz + zx\].
A. \(M = 3\).
B. \[M = 6\].
C. \[M = 0\].
D. \(M = 1\).
Câu 48:
Gọi \[S\] là tập hợp tất cả các giá trị của tham số thực \[m\] sao cho giá trị lớn nhất của hàm số \[y = \left| {{x^2} - 2x + 1 + m} \right|\] trên đoạn \[\left[ { - 1;2} \right]\] bằng \[5\]. Tính tổng các phần tử của \(S\) bằng
A. \[ - 8\].
B. \[ - 4\].
C. \[4\].
D. \[8\].
Câu 49:
Cho tứ diện đều \[ABCD\] có cạnh bằng \[a\]. Gọi \[M,\,\,N\] lần lượt là trung điểm của các cạnh \[AB,\,\,BC\] và \[E\] là điểm đối xứng với \[B\]qua \[D\]. Mặt phẳng \[\left( {MNE} \right)\] chia khối tứ diện \[ABCD\] thành hai khối đa diện. Trong đó, khối tứ diện \[ABCD\]có thể tích là \[V\], khối đa diện chứa đỉnh \[A\] có thể tích \[V'.\] Tính tỉ số \(\frac{{V'}}{V}\).
A. \(\frac{7}{{18}}\).
B. \(\frac{{11}}{{18}}\).
C. \(\frac{{13}}{{18}}\).
D. \(\frac{1}{{18}}\).
Câu 50:
Trong tất cả các cặp \(\left( {x;y} \right)\) thỏa mãn \({\log _{{x^2} + {y^2} + 2}}\left( {2x - 4y + 6} \right) \ge 1\). Tìm \(m\) để tồn tại duy nhất một cặp \(\left( {x;y} \right)\) sao cho \({x^2} + {y^2} + 2x - 2y + 2 - m = 0\).
A. \(\sqrt {13} - 3\) và \(\sqrt {13} - 3\).
B. \(\sqrt {13} - 3\).
C. \({\left( {\sqrt {13} - 3} \right)^2}\).
D. \({\left( {\sqrt {13} - 3} \right)^2}\) và \({\left( {\sqrt {13} + 3} \right)^2}\).
2989 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com