🔥 Đề thi HOT:

486 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)

4.7 K lượt thi 34 câu hỏi
107 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)

736 lượt thi 34 câu hỏi
74 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)

551 lượt thi 34 câu hỏi
67 người thi tuần này

CÂU TRẮC NGHIỆM ĐÚNG SAI

843 lượt thi 60 câu hỏi
60 người thi tuần này

Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án

64 K lượt thi 50 câu hỏi
58 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)

602 lượt thi 34 câu hỏi
58 người thi tuần này

30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)

68.2 K lượt thi 50 câu hỏi

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z - 3}}{3}\). Vectơ nào dưới đây là một vectơ chỉ phương của \(d\)?

Xem đáp án

Câu 2:

Với a là số thực dương tùy ý, \(\ln \left( {8a} \right) - \ln \left( {3a} \right)\) bằng

Xem đáp án

Câu 4:

Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a = \left( {1;3;2} \right),{\rm{ }}\overrightarrow b = \left( {1;2;0} \right)\)\(\overrightarrow c = \left( {0;1;2} \right)\). Tìm tọa độ vectơ \(\overrightarrow w = \overrightarrow a - \overrightarrow b + \overrightarrow c \).

Xem đáp án

Câu 5:

Cho \(\int\limits_0^1 {f\left( x \right)dx} = 5\). Tính phân \(\int\limits_0^1 {\left[ {2 + f\left( x \right)} \right]dx} \) bằng

Xem đáp án

Câu 6:

Điểm M như hình vẽ bên là điểm biểu diễn của số phức nào dưới đây

Điểm M như hình vẽ bên là điểm biểu diễn của số phức nào dưới đây? (ảnh 1)

Xem đáp án

Câu 7:

Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_2} + {u_5} = 19\). Tổng 6 số hạng đầu tiên bằng

Xem đáp án

Câu 8:

Cho hình nón \(\left( N \right)\) có đường cao bằng 4 và đường sinh bằng 5. Tính diện tích toàn phần \({S_{tp}}\) của hình nón \(\left( N \right)\).

Xem đáp án

Câu 9:

Số phức liên hợp của số phức \(z = 1 - 3i + {i^3}\)

Xem đáp án

Câu 11:

Với các số thực dương x, y tùy ý, đặt \({\log _2}x = a,{\rm{ }}{\log _2}y = b\). Mệnh đề nào dưới đây là đúng?

Xem đáp án

Câu 12:

Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = {5^x}\)

Xem đáp án

Câu 14:

Kí hiệu \[{z_1},{z_2}\] là hai nghiệm phức của phương trình \[{z^2} - 2z + 3 - 0\]. Giá trị của \[z_1^4 + z_2^4\] bằng

Xem đáp án

Câu 16:

Tìm tập xác định D của hàm số \(y = {\log _{\frac{1}{2}}}\left( {{x^2} - 6x + 8} \right)\).

Xem đáp án

Câu 17:

Cho hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị của hai hàm số \(y = {f_1}\left( x \right),{\rm{ }}y = {f_2}\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và hai đường thẳng \(x = a,{\rm{ }}x = b\) (như hình vẽ). Công thức tính diện tích của hình \(\left( H \right)\)

Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số  y=f1(x) (ảnh 1)

Xem đáp án

Câu 18:

Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có tâm \(I\left( {3; - 4;5} \right)\). Mặt phẳng \(\left( P \right):x - 3z - 2 = 0\) tiếp xúc với \(\left( S \right)\). Tính bán kính R của mặt cầu \(\left( S \right)\).

Xem đáp án

Câu 19:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ     (ảnh 1)

Xem đáp án

Câu 20:

Trên giá sách có 10 cuốn sách Toán khác nhau, 8 cuốn sách Vật Lý khác nhau và 6 cuốn sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn hai cuốn sách khác nhau?

Xem đáp án

Câu 21:

Giá trị lớn nhất của hàm số \(y = {x^4} - 4{x^2} + 6\) trên đoạn \(\left[ { - 2;3} \right]\) bằng

Xem đáp án

Câu 22:

Giải phương trình \({2^{{x^2} - x + 9}} = {16^{x + 1}}\).

Xem đáp án

Câu 23:

Trong không gian Oxyz, hình chiếu vuông góc của điểm \(M\left( {1;2; - 3} \right)\) trên mặt phẳng \(\left( {Oxy} \right)\) có tọa độ là

Xem đáp án

Câu 24:

Cho hình chóp S.ABC có đáy ABC là tam giác đều. Cạnh SA vuông góc với mặt phẳng đáy và \(AB = a,{\rm{ }}SB = a\sqrt 2 \). Thể tích của khối chóp S.ABC bằng

Xem đáp án

Câu 25:

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{x - \sqrt {4x - 3} }}{{{x^2} - 5x + 6}}\)

Xem đáp án

Câu 26:

Tập nghiệm của phương trình \({\log _2}\left( {{x^2} + 4} \right) - {\log _2}\left( {x - 1} \right) = 3\)

Xem đáp án

Câu 27:

Cho hàm số \(y = {x^3} - \left( {m + n} \right){x^2} + \left( {2n - m} \right)x - 1\) (m, n là tham số thực) đạt cực trị tại \(x = 1\)\(x = 5\). Mệnh đề nào dưới đây là đúng?

Xem đáp án

Câu 28:

Biết rằng \(\int\limits_0^1 {\frac{{2{x^2} + 3x + 4}}{{x + 1}}dx} = a + b\ln 2\) với \(a,b \in \mathbb{Z}\). Tính \(S = {a^4} + {b^4}\).

Xem đáp án

Câu 30:

Cho hàm số \(y = m{x^3} + m{x^2} - x + 2\). Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?

Xem đáp án

Câu 32:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy ABC là tam giác đều. Cạnh \(AA' = a\sqrt 6 \) và khoảng cách từ điểm A đến mặt phẳng \(\left( {A'BC} \right)\)\(a\sqrt 2 \). Tính thể tích V của khối lăng trụ \(ABC.A'B'C'\).

Xem đáp án

Câu 33:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Côsin của góc giữa đường thẳng SC và mặt phẳng \(\left( {ABC} \right)\) bằng

Xem đáp án

Câu 35:

Cho phương trình \({\log _{\frac{1}{2}}}\left( {m - 4x} \right) + 2{\log _2}\left( {x + 2} \right) = 0\). Giá trị của m để phương trình có nghiệm trên đoạn \(\left[ {2;5} \right]\)

Xem đáp án

Câu 36:

Cho hàm số \(f\left( x \right)\)\(f\left( 3 \right) = - \frac{{25}}{3}\)\(f'\left( x \right) = \frac{x}{{\sqrt {x + 1} - 1}}\). Khi đó \(\int\limits_3^8 {f\left( x \right)dx} \) bằng

Xem đáp án

Câu 37:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, cạnh \(AC = 3,{\rm{ }}BC = 4\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ trọng tâm của tam giác SAB đến mặt phẳng \(\left( {SBC} \right)\) bằng

Xem đáp án

Câu 38:

Trong không gian Oxyz, cho điểm \[A\left( {1; - 1;3} \right)\] và hai đường thẳng \({d_1}:\frac{{x - 4}}{1} = \frac{{y + 2}}{4} = \frac{{z - 1}}{{ - 2}}\), \({d_2}:\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{1}\). Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng \[{d_1}\] và cắt đường thẳng \[{d_2}\].

Xem đáp án

Câu 43:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ

Cho hàm số f(x)  có đồ thị như hình vẽ. (ảnh 1)

Số điểm cực trị của hàm số \(g\left( x \right) = 7f\left( {\ln x - x} \right) + 2020\)

Xem đáp án

Câu 46:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(y = f'\left( x \right)\) cho như hình vẽ. Đặt \(g\left( x \right) = 2f\left( x \right) - {\left( {x + 1} \right)^2}\). Mệnh đề nào dưới đây là đúng

Cho hàm số y=f(x)  liên tục trên R  có đồ thị y=f'(x)  cho như hình vẽ (ảnh 1)

Xem đáp án

Câu 47:

Xét hàm số \[f\left( x \right)\] liên tục trên đoạn \(\left[ {0;1} \right]\) và thỏa mãn \(4x.f\left( {{x^2}} \right) + 3f\left( {1 - x} \right) = \frac{x}{{\sqrt {{x^2} + 1} }}\).

Tính \[I = \int\limits_0^1 {f\left( x \right)dx} \].

Xem đáp án

Câu 49:

Cho \(a,b > 0\) thỏa mãn \({\log _{2a + 3b + 1}}\left( {25{a^2} + {b^2} + 1} \right) + {\log _{10ab + 1}}\left( {2a + 3b + 1} \right) = 2\). Giá trị của \(a + 4b\) bằng

Xem đáp án

4.6

3125 Đánh giá

50%

40%

0%

0%

0%