🔥 Đề thi HOT:

486 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)

4.7 K lượt thi 34 câu hỏi
107 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)

736 lượt thi 34 câu hỏi
74 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)

551 lượt thi 34 câu hỏi
67 người thi tuần này

CÂU TRẮC NGHIỆM ĐÚNG SAI

843 lượt thi 60 câu hỏi
60 người thi tuần này

Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án

64 K lượt thi 50 câu hỏi
58 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)

602 lượt thi 34 câu hỏi
58 người thi tuần này

30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)

68.2 K lượt thi 50 câu hỏi

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC, với \[A\left( {1;2;1} \right),B\left( { - 3;0;3} \right),C\left( {2;4; - 1} \right).\]  Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án

Câu 2:

Với các số thực \[a,b > 0,a \ne 1\]  tùy ý, biểu thức \[{\log _{{a^2}}}\left( {a{b^2}} \right)\] bằng:

Xem đáp án

Câu 3:

Hàm số \[y = \frac{{{x^3}}}{3} - 3{x^2} + 5x + 2019\] nghịch biến trên khoảng nào trong các khoảng dưới đây?

Xem đáp án

Câu 4:

Số nghiệm của phương trình \[\ln \left( {{x^2} - 6x + 7} \right) = \ln \left( {x - 3} \right)\]

Xem đáp án

Câu 5:

Dãy số nào sau đây là cấp số cộng?

Xem đáp án

Câu 6:

Hàm số nào dưới đây có đồ thị như hình vẽ?

Hàm số nào dưới đây có đồ thị như hình vẽ? (ảnh 1)

Xem đáp án

Câu 7:

Trong không gian Oxyz, cho hai mặt phẳng \[\left( P \right):x + 2y - 2z - 6 = 0\] \[\left( Q \right):x + 2y - 2z + 3 = 0\]. Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng

Xem đáp án

Câu 8:

Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh bằng 4π. Thể tích khối trụ là

Xem đáp án

Câu 9:

Số cách chọn ra 3 bạn bất kỳ từ một lớp có 30 bạn là:

Xem đáp án

Câu 10:

Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \[\vec a = \left( { - 2; - 3;1} \right),\vec b = \left( {1;0;1} \right).\] Tính \[\cos \left( {\vec a,\vec b} \right).\]

Xem đáp án

Câu 11:

Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].

Xem đáp án

Câu 12:

Cho hình lăng trụ tam giác đều \[ABC.A'B'C'\] \[AB = 2a,AA' = a\sqrt 3 .\] Tính thể tích V của khối lăng trụ \[ABC.A'B'C'\]theo a?

Xem đáp án

Câu 13:

Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng

Xem đáp án

Câu 14:

Cho hàm số \[y = f(x)\] có đồ thị. Hàm số đã cho đạt cực đại tại

Cho hàm số \y=f(x) có đồ thị. Hàm số đã cho đạt cực đại tại  (ảnh 1)

Xem đáp án

Câu 15:

Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]

Xem đáp án

Câu 16:

Cho hàm số \[y = f\left( x \right)\] có bảng biến như hình vẽ bên. Hỏi phương trình \[\left| {f\left( x \right) - 2} \right| - 3 = 0\] có bao nhiêu nghiệm?

Cho hàm số  y=f(x) có bảng biến như hình vẽ bên. Hỏi phương trình  (ảnh 1)

Xem đáp án

Câu 18:

Cho hai số phức \[{z_1} = 4 - 3i,{\mkern 1mu} {z_2} = 4 + 3i.\] Hỏi \[{z_1},{z_2}\] là nghiệm của phương trình nào sau đây

Xem đáp án

Câu 19:

Tìm đạo hàm của hàm số \[y = {3^{{x^2} - 2x}}\]

Xem đáp án

Câu 20:

Gọi \[M,m\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = \frac{{{x^2} + x + 3}}{{x - 2}}\] trên \[\left[ { - 2;1} \right].\] Tính \[T = M + 2m.\]

Xem đáp án

Câu 21:

Trong không gian Oxyz, cho \[A\left( {1;3;5} \right)\], \[B\left( { - 5; - 3; - 1} \right)\]. Phương trình mặt cầu đường kính AB là:

Xem đáp án

Câu 22:

Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:

Xem đáp án

Câu 23:

Đồ thị hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + n\] có tọa độ điểm cực tiểu là \[\left( {1;3} \right)\]. Khi đó \[m + n\] bằng:

Xem đáp án

Câu 24:

Cho số thực x thỏa mãn : \[\log x = \frac{1}{2}\log 3a - 2\log b + 3\log \sqrt c \] (\[a,b,c\] là các số thực dương). Hãy biểu diễn x theo \[a,b,c\].

Xem đáp án

Câu 26:

Cho phương trình \[{4^{{x^2} - 2x}} + {2^{{x^2} - 2x + 3}} - 3 = 0\]. Khi đặt \[{2^{{x^2} - 2x}} = t;t > 0\] ta được phương trình nào dưới đây?

Xem đáp án

Câu 27:

Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính \[R = 6cm\]. I, K là 2 điểm trên đoạn OA sao cho \[OI = IK = KA\]. Các mặt phẳng \[\left( \alpha \right),\left( \beta \right)\] lần lượt qua I, K cùng vuông góc với \[OA\] và cắt mặt cầu (S) theo các đường tròn có bán kính \[{r_1},{r_2}\]. Tính tỉ số \[\frac{{{r_1}}}{{{r_2}}}\]

Xem đáp án

Câu 28:

Cho hàm số \[y = f(x)\] có bảng biến thiên

Cho hàm số y=f(x) có bảng biến thiên   Số đường tiệm cận  (ảnh 1)

Số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là

Xem đáp án

Câu 30:

Cho 2 đường thẳng \[{d_1}:\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\] và \[{d_2}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{{ - 1}}.\] Phương trình đường thẳng qua \[A\left( {2;1; - 1} \right)\] và vuông góc với cả \[{d_1};{d_2}\]

Xem đáp án

Câu 32:

Biết \[\int\limits_1^e {\frac{{\ln x}}{{x\left( {\ln x + 2} \right)}}{\rm{d}}x = a\ln 3 + b\ln 2 + c,{\mkern 1mu} {\mkern 1mu} (a,b,c \in Q).} \] Tính giá trị của \[S = {a^2} + {b^2} + {c^2}.\]

Xem đáp án

Câu 35:

Cho hàm số \[y = f\left( x \right).\] Hàm số \[y = f'\left( x \right)\] có đồ thị như sau:

Cho hàm số y=f(x)  Hàm số y=f'(x)có đồ thị như sau:   (ảnh 1)

Bất phương trình \[f\left( x \right) > {x^2} - 2x + m\] đúng với mọi \[x \in \left( {1;2} \right)\] khi và chỉ khi

Xem đáp án

Câu 36:

Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu của đạo hàm như sau.

Cho hàm số y=f(x)  có bảng xét dấu của đạo hàm như sau.   (ảnh 1)

Hàm số \[y = f\left( {x - 1} \right) + {x^3} - 12x + 2019\] nghịch biến trên khoảng nào dưới đây?

Xem đáp án

Câu 39:

Có bao nhiêu số nguyên m thuộc \[\left[ { - 2020;2020} \right]\] sao cho phương trình \[{4^{{{\left( {x - 1} \right)}^2}}} - 4m{.2^{{x^2} - 2x}} + 3m - 2 = 0\] có bốn nghiệm phân biệt?

Xem đáp án

Câu 44:

Cho các số phức \[z,w\] thỏa mãn \[\left| {z - 5 + 3i} \right| = 3,\left| {iw + 4 + 2i} \right| = 2.\] Tìm giá trị lớn nhất của biểu thức \[T = \left| {3iz + 2w} \right|.\]

Xem đáp án

Câu 45:

Diện tích hình phẳng giới hạn bởi đồ thị hàm số bậc ba \[y = f\left( x \right)\] và các trục tọa độ là \[S = 32\] (hình vẽ bên). Tính thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng trên quanh trục \[Ox.\]

Diện tích hình phẳng giới hạn bởi đồ thị hàm số bậc ba  y=f(x) (ảnh 1)

Xem đáp án

Câu 46:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Cho hàm số y=f(x)có bảng biến thiên như sau:   (ảnh 1)

Hàm \[g\left( x \right) = 2{f^3}\left( x \right) - 6{f^2}\left( x \right) - 1\] có bao nhiêu điểm cực tiểu?

Xem đáp án

Câu 47:

Cho hình lập phương \[ABCD.A'B'C'D'\] cạnh a. Gọi M, N lần lượt là trung điểm của cạnh \[A'B'\] và BC. Mặt phẳng (DMN) chia khối lập phương thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnhA và \[(H')\] là khối đa diện còn lại. Tính tỉ số \[\frac{{{V_{(H)}}}}{{{V_{(H')}}}}.\]

Xem đáp án

Câu 50:

Biết giá trị lớn nhất của hàm số \[y = f\left( x \right) = \left| {2{x^3} - 15x + m - 5} \right| + 9x\] trên \[\left[ {0;3} \right]\] bằng 60. Tính tổng tất cả các giá trị của tham số thực m.

Xem đáp án

4.6

3125 Đánh giá

50%

40%

0%

0%

0%