Câu hỏi:

28/06/2022 408 Lưu

Hàm số \[y = \frac{{{x^3}}}{3} - 3{x^2} + 5x + 2019\] nghịch biến trên khoảng nào trong các khoảng dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Xác định khoảng D\(y' \le 0\)\(y' = 0\) tại hữu hạn điểm trên D.

Cách giải:

Hàm số y=x^3/3-3x^2+5x+2019  nghịch biến trên khoảng nào  (ảnh 1)

\(y = \frac{{{x^3}}}{3} - 3{x^2} + 5x + 2019 \Rightarrow y' = {x^2} - 6x + 5,{\rm{ }}y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 5\end{array} \right.\)

Hàm số \(y = \frac{{{x^3}}}{3} - 3{x^2} + 5x + 2019\) nghịch biến trên \(\left( {1;5} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Đặt \(2x = t \Rightarrow J = \int\limits_0^4 {f\left( t \right)d\left( {\frac{t}{2}} \right) = \frac{1}{2}\int\limits_0^4 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^4 {f\left( x \right)dx} = \frac{1}{2}.32 = 16} \).

Lời giải

Đáp án A

\(\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} = \int {\frac{{ - 2\left( {x - 2} \right) + 3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} \)

                        \( = \int {\left( {\frac{{ - 2}}{{x - 1}} + \frac{3}{{x - 2}}} \right)dx} \)

                        \( = - 2\ln \left| {x - 1} \right| + 3\ln \left| {x - 2} \right| + C\)

\( \Rightarrow a = - 2,{\rm{ }}b = 3 \Rightarrow a + b = 1\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP