Câu hỏi:

28/06/2022 1,334

Cho hàm số \[y = f\left( x \right)\] là hàm số bậc ba có bảng biến thiên như hình vẽ

Cho hàm số y=f(x) là hàm số bậc ba có bảng biến thiên như hình vẽ   (ảnh 1)

Số đường tiệm cận đứng và ngang của đồ thị hàm số \[y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\]

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Vì hàm số \(y = f\left( x \right)\) là hàm số bậc ba nên \(\mathop {\lim }\limits_{x \to \infty } \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}} = 0\) Þ Đồ thị hàm số \(y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\) luôn có một đường tiệm cận ngang là \(y = 0\).

Lại có: \(y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}} = \frac{{\frac{{4{x^2} + 28x + 49 - 9\left( {4x + 5} \right)}}{{2x + 7 + 3\sqrt {4x + 5} }}}}{{\left| {f\left( x \right)} \right| - 2}} = \frac{{4{x^2} - 8x + 4}}{{\left( {2x + 7 + 3\sqrt {4x + 5} } \right)\left( {\left| {f\left( x \right)} \right| - 2} \right)}}\)

\( = \frac{{4{{\left( {x - 1} \right)}^2}}}{{\left( {2x + 7 + 3\sqrt {4x + 5} } \right)\left( {\left| {f\left( x \right)} \right| - 2} \right)}}\).

Với điều kiện \(x \ge \frac{{ - 5}}{4}\) thì phương trình \(f\left( x \right) = - 2\) có nghiệm kép \(x = 1\) và phương trình \(f\left( x \right) = 2\) vô nghiệm.

Do đó đồ thị hàm số \(y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\) không có tiệm cận đứng.

Vậy đồ thị hàm số \(y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\) có 1 đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].

Xem đáp án » 28/06/2022 4,075

Câu 2:

Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]

Xem đáp án » 28/06/2022 1,091

Câu 3:

Biết \[\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx = a\ln \left| {x - 1} \right|} + b\ln \left| {x - 2} \right| + C,\left( {a,b \in \mathbb{R}} \right).\] Tính giá trị của biểu thức \[a + b\].

Xem đáp án » 28/06/2022 1,028

Câu 4:

Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng

Xem đáp án » 28/06/2022 704

Câu 5:

Biết giá trị lớn nhất của hàm số \[y = f\left( x \right) = \left| {2{x^3} - 15x + m - 5} \right| + 9x\] trên \[\left[ {0;3} \right]\] bằng 60. Tính tổng tất cả các giá trị của tham số thực m.

Xem đáp án » 28/06/2022 673

Câu 6:

Xét số phức R thỏa mãn \[\frac{{z + 2}}{{z - 2i}}\] là số thuần ảo. Biết rằng tập hợp các điểm biểu diễn các số phức R luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng

Xem đáp án » 28/06/2022 534

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn