Câu hỏi:
28/06/2022 224Một chất điểm đang chuyển động với vận tốc \[{v_0} = 15{\mkern 1mu} m/s\] thì tăng tốc với gia tốc \[a\left( t \right) = {t^2} + 4t{\mkern 1mu} \left( {m/{s^2}} \right).\] Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng vận tốc.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án C
Ta có: \[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {{t^2} + 4t} \right)dt} = \frac{{{t^3}}}{3} + 2{t^2} + C\left( {m/s} \right)\].
Do khi bắt đầu tăng tốc \[{v_0} = 15\] nên \[{v_{\left( {t = 0} \right)}} = 15 \Rightarrow C = 15 \Rightarrow v\left( t \right) = \frac{{{t^3}}}{3} + 2{t^2} + 15\]
Khi đó quãng đường đi được bằng \[S = \int\limits_0^3 {v\left( t \right)dt} = \int\limits_0^3 {\left( {15 + \frac{{{t^3}}}{3} + 2{t^2}} \right)dt = \left. {\left( {15t + \frac{{{t^4}}}{{12}} + \frac{2}{3}{t^3}} \right)} \right|_0^3 = 69,75m} \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].
Câu 2:
Cho hàm số \[y = f\left( x \right)\] là hàm số bậc ba có bảng biến thiên như hình vẽ
Số đường tiệm cận đứng và ngang của đồ thị hàm số \[y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\] là
Câu 3:
Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]
Câu 4:
Biết \[\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx = a\ln \left| {x - 1} \right|} + b\ln \left| {x - 2} \right| + C,\left( {a,b \in \mathbb{R}} \right).\] Tính giá trị của biểu thức \[a + b\].
Câu 5:
Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng
Câu 6:
Biết giá trị lớn nhất của hàm số \[y = f\left( x \right) = \left| {2{x^3} - 15x + m - 5} \right| + 9x\] trên \[\left[ {0;3} \right]\] bằng 60. Tính tổng tất cả các giá trị của tham số thực m.
Câu 7:
Xét số phức R thỏa mãn \[\frac{{z + 2}}{{z - 2i}}\] là số thuần ảo. Biết rằng tập hợp các điểm biểu diễn các số phức R luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng
về câu hỏi!