Câu hỏi:

28/06/2022 8

Người ta xếp bảy viên bi là các khối cầu có cùng bán kính R vào một cái lọ hình trụ. Biết rằng các viên bi đều tiếp xúc với hai đáy, viên bi nằm chính giữa tiếp xúc với sáu viên bi xung quanh và mỗi viên bi xung quanh đều tiếp xúc với các đường sinh của lọ hình trụ. Tính theo R thể tích lượng nước cần dùng để đổ đầy vào lọ sau khi đã xếp bi.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

+) Xác định bán kính đáy và chiều cao hình trụ.

+) Tính thể tích khối trụ.

+) Tính tổng thể tích 7 viên bi, từ đó suy ra thể tích lượng nước cần dùng.

Cách giải:

Ta mô phỏng hình vẽ đáy của hình trụ như sau:

Người ta xếp bảy viên bi là các khối cầu có cùng bán kính R vào một cái  (ảnh 1)

Khi đó ta có \({R_{ht}} = 3R\) và chiều cao hình trụ chính bằng đường kính viên bi và \(h = 2R\).

\( \Rightarrow {V_{ht}} = \pi R_{ht}^2h = \pi {\left( {3R} \right)^2}.2R = 18\pi {R^3}\)

Thể tích 7 viên bi là: \(7.\frac{4}{3}\pi {R^3} = \frac{{28\pi {R^3}}}{3}\).

Vậy thể tích lượng nước cần dùng để đổ đầy vào lọ sau khi đã xếp bi là \(18\pi {R^3} - \frac{{28\pi {R^3}}}{3} = \frac{{26\pi {R^3}}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:

Xem đáp án » 28/06/2022 43

Câu 2:

Trong không gian Oxyz, cho mặt cầu \[(S):{(x + 2)^2} + {(y - 1)^2} + {(z + \sqrt 2 )^2} = 9\] và hai điểm \[A( - 2;0; - 2\sqrt 2 ),B( - 4; - 4;0)\]. Biết rằng tập hợp các điểm M thuộc \[(S)\] sao cho \[M{A^2} + \overrightarrow {MO} .\overrightarrow {MB} = 16\] là một đường tròn. Bán kính của đường tròn đó bằng

Xem đáp án » 28/06/2022 39

Câu 3:

Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC, với \[A\left( {1;2;1} \right),B\left( { - 3;0;3} \right),C\left( {2;4; - 1} \right).\]  Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 28/06/2022 38

Câu 4:

Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng

Xem đáp án » 28/06/2022 36

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật \[AB = a\], \[AD = 2a\], cạnh bên SA vuông góc với đáy và thể tích khối chóp S.ABCD bằng \[\frac{{2{a^3}}}{3}\] . Tính góc tạo bởi đường thẳng SB với mặt phẳng \[\left( {ABCD} \right)\].

Xem đáp án » 28/06/2022 36

Câu 6:

Với các số thực \[a,b > 0,a \ne 1\]  tùy ý, biểu thức \[{\log _{{a^2}}}\left( {a{b^2}} \right)\] bằng:

Xem đáp án » 28/06/2022 30

Câu 7:

Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].

Xem đáp án » 28/06/2022 30

Bình luận


Bình luận