🔥 Đề thi HOT:

1222 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)

7.1 K lượt thi 34 câu hỏi
414 người thi tuần này

CÂU TRẮC NGHIỆM ĐÚNG SAI

1.9 K lượt thi 60 câu hỏi
334 người thi tuần này

Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án

64.5 K lượt thi 50 câu hỏi
280 người thi tuần này

44 bài tập Đạo hàm và khảo sát hàm số có lời giải

560 lượt thi 44 câu hỏi
236 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)

1 K lượt thi 34 câu hỏi
223 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)

1.2 K lượt thi 34 câu hỏi
197 người thi tuần này

30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 23)

69.6 K lượt thi 50 câu hỏi

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Cho a là số thực dương tùy ý và \[a \ne 1.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án

Câu 2:

Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.

Xem đáp án

Câu 3:

Điểm M như hình vẽ bên là điểm biểu diễn số phức nào dưới đây?

Điểm M như hình vẽ bên là điểm biểu diễn số phức nào dưới đây?  (ảnh 1)

Xem đáp án

Câu 4:

Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng

Xem đáp án

Câu 5:

Trong không gian Oxyz, cho vectơ \[\vec a = 2\vec i + \vec k - 3\vec j.\] Tọa độ của vectơ \[\vec a\]

Xem đáp án

Câu 6:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ ?

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ  (ảnh 1)

Xem đáp án

Câu 7:

Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).

Xem đáp án

Câu 8:

Cho số phức \[z = 1 + 2i.\] Tìm số phức \[w = iz + \bar z.\]

Xem đáp án

Câu 9:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau:    Hàm số đã cho nghịch biến (ảnh 1)

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem đáp án

Câu 10:

Tìm tập xác định D của hàm số \[y = {\left( {{x^3} - 8} \right)^{ - 2020}}.\]

Xem đáp án

Câu 11:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\]

Xem đáp án

Câu 12:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau:   Hàm số đã (ảnh 1)

Hàm số đã cho đạt cực tiểu tại

Xem đáp án

Câu 13:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau:    Phương trình  (ảnh 1)

Phương trình \[f\left( x \right) - 7 = 0\] có số nghiệm thực là

Xem đáp án

Câu 14:

Trong không gian Oxyz, cho đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 3}}{3}.\] Đường thẳng d đi qua điểm có tọa độ nào dưới đây

Xem đáp án

Câu 15:

Phương trình nào dưới đây nhận hai số phức \[1 + \sqrt 3 i\]\[1 - \sqrt 3 i\] là nghiệm?

Xem đáp án

Câu 16:

Từ các chữ số \[{\rm{1, 2, 3, 4, 5, 6, 7, 8, 9}}\] lập được bao nhiêu số có 3 chữ số đôi một khác nhau?

Xem đáp án

Câu 17:

Giải phương trình \[{2^{{x^2} - 10x + \frac{5}{2}}} = 8\sqrt 2 .\]

Xem đáp án

Câu 18:

Cho hàm số \[y = f\left( x \right)\] liên tục và có đồ thị (C) như hình vẽ. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đã cho và trục Ox. Quay hình phẳng D quanh trục Ox ta được khối tròn xoay có thể tích được xác định theo công thức

Cho hàm số y=f(x) liên tục và có đồ thị (C) như hình vẽ (ảnh 1)

Xem đáp án

Câu 21:

Trong không gian Oxyz, hình chiếu vuông góc của điểm \[M\left( {1;2; - 3} \right)\] trên mặt phẳng (Oxz) có tọa độ là

Xem đáp án

Câu 22:

Giá trị nhỏ nhất của hàm số \[y = {x^4} - {x^2} + 6\] trên đoạn \[\left[ { - 2;0} \right]\] bằng

Xem đáp án

Câu 23:

Một cái trục lăn sơn nước có dạng một hình trụ. Đường kính của đường tròn đáy là 6cm, chiều dài lăn là 25cm (như hình vẽ). Sau khi lăn trọn 10 vòng thì trục lăn tạo nên bức tường phẳng có diện tích là

Một cái trục lăn sơn nước có dạng một hình trụ. Đường kính của đường (ảnh 1)

Xem đáp án

Câu 24:

Tìm tất cả các giá trị của tham số m để hàm số \[y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - m - 1} \right)x\] đạt cực đại tại điểm \[x = - 1.\]

Xem đáp án

Câu 25:

Tập nghiệm của phương trình \[2{\log _4}x - {\log _{\frac{1}{2}}}\left( {x - 1} \right) = 1\]

Xem đáp án

Câu 26:

Biết rằng \[\int\limits_0^1 {\frac{{x - 1}}{{{x^2} + 3x + 2}}dx} = a\ln 2 + b\ln 3,\] với \[a,{\rm{ }}b \in \mathbb{Z}.\] Tính \[S = {a^3} + {b^3}.\]

Xem đáp án

Câu 27:

Cho hình lăng trụ tam giác đều \[ABC.A'B'C'\] có góc giữa hai mặt phẳng \[\left( {A'BC} \right)\] \[\left( {ABC} \right)\] bằng \[60^\circ ,\] cạnh \[AB = a.\] Thể tích của khối lăng trụ \[ABC.A'B'C'\] bằng

Xem đáp án

Câu 29:

Có bao nhiêu giá trị nguyên thuộc khoảng \[\left( { - 6;12} \right)\] của tham số m để đồ thị hàm số \[y = \frac{{mx + 4}}{{{x^2} - 3x + 2}}\] có đúng ba đường tiệm cận?

Xem đáp án

Câu 38:

Cho hàm số \[y = {x^3} + mx - \frac{1}{{5{x^5}}}\]. Có bao nhiêu giá trị nguyên âm của tham số m để hàm số đồng biến trên khoảng \[\left( {0;{\mkern 1mu} + \infty } \right)\]?

Xem đáp án

Câu 39:

Cho hàm số \[y = f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có bảng biến thiên như sau:

Cho hàm số y=f(x). Hàm số y=f'(x) có bảng biến thiên như sau (ảnh 1)

Bất phương trình \[f\left( x \right) > \sqrt {{x^2} + {\rm{e}}} + m\] có nghiệm với mọi \[x \in \left( { - 3;0} \right)\] khi và chỉ khi

Xem đáp án

Câu 40:

Gọi D là hình phẳng giới hạn bởi đồ thị hàm số \[y = \sqrt x \], cung tròn có phương trình \[y = \sqrt {6 - {x^2}} \] \[\left( { - \sqrt 6 \le x \le \sqrt 6 } \right)\] và trục hoành (phần gạch chéo). Tính thể tích của vật thể tròn xoay sinh bởi khi quay hình phẳng D quanh trục Ox.

Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y= căn x (ảnh 1)

Xem đáp án

Câu 41:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 5 = 0\] và hai đường thẳng \[{d_1}:\frac{{x + 1}}{1} = \frac{{y + 3}}{1} = \frac{{z - 4}}{{ - 1}},{\rm{ }}{d_2}:\frac{{x - 1}}{1} = \frac{{y + 1}}{2} = \frac{{z - 3}}{1}.\] Viết phương trình đường thẳng d nằm trên mặt phẳng \[\left( P \right),\] đồng thời cắt cả hai đường thẳng \[{d_1}\]\[{d_2}.\]

Xem đáp án

Câu 46:

Cho hàm số f(x) liên tục trên đoạn \[\left[ {\frac{\pi }{4};\frac{\pi }{3}} \right]\] thỏa mãn \[f'\left( x \right).\sin 2x = 1 + 2.f\left( x \right)\] với \[\forall x \in \left[ {\frac{\pi }{4};\frac{\pi }{3}} \right]\] \[f\left( {\frac{\pi }{4}} \right) = 1.\] Tích phân \[I = \int\limits_0^{\frac{\pi }{3}} {f\left( x \right)dx} \] bằng

Xem đáp án

Câu 47:

Cho hai số phức \[{z_1},{z_2}\] thỏa mãn \[\left| {{z_1} - {z_2}} \right| = \left| {{z_1}} \right| = \left| {{z_2}} \right| > 0\]. Tính \[{\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^4} + {\left( {\frac{{{z_2}}}{{{z_1}}}} \right)^4}\].

Xem đáp án

Câu 48:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \[y = {2^{f\left( x \right)}} - {3^{f\left( x \right)}}\].

Cho hàm số y=f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số  (ảnh 1)

Xem đáp án

4.6

3228 Đánh giá

50%

40%

0%

0%

0%