Câu hỏi:

24/07/2022 172

Cho hai số phức \[{z_1},{z_2}\] thỏa mãn \[\left| {{z_1} - {z_2}} \right| = \left| {{z_1}} \right| = \left| {{z_2}} \right| > 0\]. Tính \[{\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^4} + {\left( {\frac{{{z_2}}}{{{z_1}}}} \right)^4}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có \(\left| {\frac{{{z_1} - {z_2}}}{{{z_1}}}} \right| = \left| {\frac{{{z_1} - {z_2}}}{{{z_2}}}} \right| = 1 \Rightarrow \left| {1 - \frac{{{z_2}}}{{{z_1}}}} \right| = \left| {\frac{{{z_1}}}{{{z_2}}} - 1} \right| = 1.\)

Giả sử \(\frac{{{z_1}}}{{{z_2}}} = a + bi{\rm{\;}}\left( {a,b \in \mathbb{R}} \right)\), từ \(\left| {\frac{{{z_1}}}{{{z_2}}} - 1} \right| = 1 \Rightarrow {\left( {a - 1} \right)^2} + {b^2} = 1\) (1)

Ta có \(\frac{{{z_2}}}{{{z_1}}} = \frac{1}{{a + bi}} = \frac{{a - bi}}{{{a^2} + {b^2}}}\), từ \(\left| {1 - \frac{{{z_2}}}{{{z_1}}}} \right| \Rightarrow \left| {\frac{{{a^2} + {b^2} - a}}{{{a^2} + {b^2}}} + \frac{b}{{{a^2} + {b^2}}}i} \right| = 1\)

\( \Rightarrow {\left( {\frac{{{a^2} + {b^2} - a}}{{{a^2} + {b^2}}}} \right)^2} + {\left( {\frac{b}{{{a^2} + {b^2}}}} \right)^2} = 1 \Rightarrow {\left( {{a^2} + {b^2} - a} \right)^2} + {b^2} = {\left( {{a^2} + {b^2}} \right)^2}\)

Từ (1) \( \Rightarrow {b^2} = 2a - {a^2} \Rightarrow {a^2} + \left( {2a - {a^2}} \right) = {\left( {2a} \right)^2} \Rightarrow 2a = 4{a^2} \Rightarrow \left[ \begin{array}{l}a = 0\\a = \frac{1}{2}\end{array} \right.\)

Với \(a = 0 \Rightarrow b = 0 \Rightarrow \frac{{{z_1}}}{{{z_2}}} = 0 \Rightarrow \) không thỏa mãn.

Với \(a = \frac{1}{2} \Rightarrow \frac{1}{4} + {b^2} = 1 \Rightarrow b = \pm \frac{{\sqrt 3 }}{2} \Rightarrow \frac{{{z_1}}}{{{z_2}}} = \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\)

Lưu ý \(P = {\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^4} + {\left( {\frac{{{z_2}}}{{{z_1}}}} \right)^4} = {\left[ {{{\left( {\frac{{{z_1}}}{{{z_2}}}} \right)}^2} + {{\left( {\frac{{{z_2}}}{{{z_1}}}} \right)}^2}} \right]^2} - 2.\) Bấm máy tính được \(P = - 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.

Lời giải

Đáp án D

Ta có \({u_6} = {u_1}{q^5} \Rightarrow \frac{3}{{32}} = 3{q^5} \Rightarrow q = \frac{1}{2}.\)

Câu 2

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\]

Lời giải

Đáp án D

Ta có \(\int {\frac{1}{{4x + 1}}dx} = \frac{1}{4}\ln \left| {4x + 1} \right| + C.\)

Câu 3

Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Gọi D là hình phẳng giới hạn bởi đồ thị hàm số \[y = \sqrt x \], cung tròn có phương trình \[y = \sqrt {6 - {x^2}} \] \[\left( { - \sqrt 6 \le x \le \sqrt 6 } \right)\] và trục hoành (phần gạch chéo). Tính thể tích của vật thể tròn xoay sinh bởi khi quay hình phẳng D quanh trục Ox.

Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y= căn x (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay