Câu hỏi:
24/07/2022 121Cho hai số phức \[{z_1},{z_2}\] thỏa mãn \[\left| {{z_1} - {z_2}} \right| = \left| {{z_1}} \right| = \left| {{z_2}} \right| > 0\]. Tính \[{\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^4} + {\left( {\frac{{{z_2}}}{{{z_1}}}} \right)^4}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Ta có \(\left| {\frac{{{z_1} - {z_2}}}{{{z_1}}}} \right| = \left| {\frac{{{z_1} - {z_2}}}{{{z_2}}}} \right| = 1 \Rightarrow \left| {1 - \frac{{{z_2}}}{{{z_1}}}} \right| = \left| {\frac{{{z_1}}}{{{z_2}}} - 1} \right| = 1.\)
Giả sử \(\frac{{{z_1}}}{{{z_2}}} = a + bi{\rm{\;}}\left( {a,b \in \mathbb{R}} \right)\), từ \(\left| {\frac{{{z_1}}}{{{z_2}}} - 1} \right| = 1 \Rightarrow {\left( {a - 1} \right)^2} + {b^2} = 1\) (1)
Ta có \(\frac{{{z_2}}}{{{z_1}}} = \frac{1}{{a + bi}} = \frac{{a - bi}}{{{a^2} + {b^2}}}\), từ \(\left| {1 - \frac{{{z_2}}}{{{z_1}}}} \right| \Rightarrow \left| {\frac{{{a^2} + {b^2} - a}}{{{a^2} + {b^2}}} + \frac{b}{{{a^2} + {b^2}}}i} \right| = 1\)
\( \Rightarrow {\left( {\frac{{{a^2} + {b^2} - a}}{{{a^2} + {b^2}}}} \right)^2} + {\left( {\frac{b}{{{a^2} + {b^2}}}} \right)^2} = 1 \Rightarrow {\left( {{a^2} + {b^2} - a} \right)^2} + {b^2} = {\left( {{a^2} + {b^2}} \right)^2}\)
Từ (1) \( \Rightarrow {b^2} = 2a - {a^2} \Rightarrow {a^2} + \left( {2a - {a^2}} \right) = {\left( {2a} \right)^2} \Rightarrow 2a = 4{a^2} \Rightarrow \left[ \begin{array}{l}a = 0\\a = \frac{1}{2}\end{array} \right.\)
Với \(a = 0 \Rightarrow b = 0 \Rightarrow \frac{{{z_1}}}{{{z_2}}} = 0 \Rightarrow \) không thỏa mãn.
Với \(a = \frac{1}{2} \Rightarrow \frac{1}{4} + {b^2} = 1 \Rightarrow b = \pm \frac{{\sqrt 3 }}{2} \Rightarrow \frac{{{z_1}}}{{{z_2}}} = \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\)
Lưu ý \(P = {\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^4} + {\left( {\frac{{{z_2}}}{{{z_1}}}} \right)^4} = {\left[ {{{\left( {\frac{{{z_1}}}{{{z_2}}}} \right)}^2} + {{\left( {\frac{{{z_2}}}{{{z_1}}}} \right)}^2}} \right]^2} - 2.\) Bấm máy tính được \(P = - 1.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.
Câu 2:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\] là
Câu 3:
Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).
Câu 4:
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng
Câu 5:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]
Câu 6:
Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]
Câu 7:
Cho hàm số \[y = {x^3} + mx - \frac{1}{{5{x^5}}}\]. Có bao nhiêu giá trị nguyên âm của tham số m để hàm số đồng biến trên khoảng \[\left( {0;{\mkern 1mu} + \infty } \right)\]?
về câu hỏi!