Câu hỏi:

24/07/2022 817

Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Tiếp tuyến \(d:y = k\left( {x - \frac{2}{3}} \right).\)

Điều kiện tiếp xúc là hệ sau có nghiệm

\(\left\{ \begin{array}{l}\frac{5}{6}{x^3} + mx - \frac{2}{3}m = k\left( {x - \frac{2}{3}} \right)\\\frac{5}{2}{x^2} + m = k\end{array} \right. \Rightarrow \frac{5}{6}{x^3} + mx - \frac{2}{3}m = \left( {\frac{5}{2}{x^2} + m} \right)\left( {x - \frac{2}{3}} \right)\)

\( \Leftrightarrow \frac{5}{6}{x^3} + mx - \frac{2}{3}m = \frac{5}{2}{x^3} - \frac{5}{3}{x^2} + mx - \frac{2}{3}m \Leftrightarrow \frac{5}{6}{x^3} = \frac{5}{2}{x^3} - \frac{5}{3}{x^2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{l}}{k = m}\\{k = m + \frac{5}{2}}\end{array}} \right.\)

Hai tiếp tuyến có hệ số góc

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Ta có \({u_6} = {u_1}{q^5} \Rightarrow \frac{3}{{32}} = 3{q^5} \Rightarrow q = \frac{1}{2}.\)

Câu 2

Lời giải

Đáp án D

Ta có \(\int {\frac{1}{{4x + 1}}dx} = \frac{1}{4}\ln \left| {4x + 1} \right| + C.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP