Câu hỏi:
24/07/2022 231Gọi D là hình phẳng giới hạn bởi đồ thị hàm số \[y = \sqrt x \], cung tròn có phương trình \[y = \sqrt {6 - {x^2}} \] \[\left( { - \sqrt 6 \le x \le \sqrt 6 } \right)\] và trục hoành (phần gạch chéo). Tính thể tích của vật thể tròn xoay sinh bởi khi quay hình phẳng D quanh trục Ox.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Xét phương trình \(\sqrt x = \sqrt {6 - {x^2}} \Leftrightarrow x = 2.\)
Gọi \(\left( A \right)\) là hình phẳng giới hạn bởi các đường \(y = \sqrt x ;y = 0;x = 0;x = 2.\)
Quay \(\left( A \right)\) quanh trục hoành ta được vật thể tròn xoay có thể tích
\({V_1} = \pi \int\limits_0^2 {{{\left( {\sqrt x } \right)}^2}dx} = \pi .\frac{{{x^2}}}{2}\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. = 2\pi \)
Gọi \(\left( B \right)\) là hình phẳng giới hạn bởi các đường
\(y = \sqrt {6 - {x^2}} ;y = 0;x = 2;x = \sqrt 6 .\)
Quay \(\left( B \right)\) quanh trục honàh ta được vật thể tròn xoay có thể tích
\({V_2} = \pi \int\limits_2^{\sqrt 6 } {{{\left( {\sqrt {6 - {x^2}} } \right)}^2}dx} = \pi \left( {6x - \frac{{{x^3}}}{3}} \right)\left| {_{\scriptstyle\atop\scriptstyle2}^{\scriptstyle\sqrt 6 \atop\scriptstyle}} \right. = \pi \left( {6\sqrt 6 - 2\sqrt 6 } \right) - \frac{{28\pi }}{3} = 4\pi \sqrt 6 - \frac{{28\pi }}{3}.\)
Cung tròn khi quay quanh Ox tạo thành một khối cầu có thể tích
\(V = \frac{4}{3}\pi {\left( {\sqrt 6 } \right)^3} = 8\pi \sqrt 6 .\)
Thể tích cần tính là \(V - \left( {{V_1} + {V_2}} \right) = 4\pi \sqrt 6 + \frac{{22\pi }}{3}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.
Câu 2:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\] là
Câu 3:
Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).
Câu 4:
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng
Câu 5:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]
Câu 6:
Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]
Câu 7:
Cho hàm số \[y = {x^3} + mx - \frac{1}{{5{x^5}}}\]. Có bao nhiêu giá trị nguyên âm của tham số m để hàm số đồng biến trên khoảng \[\left( {0;{\mkern 1mu} + \infty } \right)\]?
về câu hỏi!