Câu hỏi:
24/07/2022 889Gọi D là hình phẳng giới hạn bởi đồ thị hàm số \[y = \sqrt x \], cung tròn có phương trình \[y = \sqrt {6 - {x^2}} \] \[\left( { - \sqrt 6 \le x \le \sqrt 6 } \right)\] và trục hoành (phần gạch chéo). Tính thể tích của vật thể tròn xoay sinh bởi khi quay hình phẳng D quanh trục Ox.
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Bắt đầu thiQuảng cáo
Trả lời:
Đáp án D
Xét phương trình \(\sqrt x = \sqrt {6 - {x^2}} \Leftrightarrow x = 2.\)
Gọi \(\left( A \right)\) là hình phẳng giới hạn bởi các đường \(y = \sqrt x ;y = 0;x = 0;x = 2.\)
Quay \(\left( A \right)\) quanh trục hoành ta được vật thể tròn xoay có thể tích
\({V_1} = \pi \int\limits_0^2 {{{\left( {\sqrt x } \right)}^2}dx} = \pi .\frac{{{x^2}}}{2}\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. = 2\pi \)
Gọi \(\left( B \right)\) là hình phẳng giới hạn bởi các đường
\(y = \sqrt {6 - {x^2}} ;y = 0;x = 2;x = \sqrt 6 .\)
Quay \(\left( B \right)\) quanh trục honàh ta được vật thể tròn xoay có thể tích
\({V_2} = \pi \int\limits_2^{\sqrt 6 } {{{\left( {\sqrt {6 - {x^2}} } \right)}^2}dx} = \pi \left( {6x - \frac{{{x^3}}}{3}} \right)\left| {_{\scriptstyle\atop\scriptstyle2}^{\scriptstyle\sqrt 6 \atop\scriptstyle}} \right. = \pi \left( {6\sqrt 6 - 2\sqrt 6 } \right) - \frac{{28\pi }}{3} = 4\pi \sqrt 6 - \frac{{28\pi }}{3}.\)
Cung tròn khi quay quanh Ox tạo thành một khối cầu có thể tích
\(V = \frac{4}{3}\pi {\left( {\sqrt 6 } \right)^3} = 8\pi \sqrt 6 .\)
Thể tích cần tính là \(V - \left( {{V_1} + {V_2}} \right) = 4\pi \sqrt 6 + \frac{{22\pi }}{3}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.
Câu 2:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\] là
Câu 3:
Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).
Câu 4:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]
Câu 5:
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng
Câu 6:
Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận