Câu hỏi:

24/07/2022 161 Lưu

Cho số phức \[z = a + bi{\rm{ }}\left( {a,{\rm{ }}b \in \mathbb{R}} \right)\] thỏa mãn \[\left| {z - 2} \right| = \left| z \right|\]\[\left( {z + 1} \right)\left( {\bar z - i} \right)\] là số thực. Tính \[a + b.\]

A. 2.                       
B. \[ - 2.\]              
C. 1.                       
D. \[ - 1.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Giả sử \(z = a + bi\left( {a,b \in R} \right)\)

Ta có \(\left\{ {\begin{array}{*{20}{l}}{\left| {z - 2} \right| = \left| z \right|}\\{\left( {z + 1} \right)\left( {\bar z - i} \right) \in R}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\left| {a - 2 + bi} \right| = \left| {a + bi} \right|}\\{\left( {a + 1 + bi} \right)\left[ {a - \left( {b + 1} \right)i} \right] \in R}\end{array}} \right.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( {a - 2} \right)}^2} + {b^2} = {a^2} + {b^2}}\\{a\left( {a + 1} \right) + b\left( {b + 1} \right) - \left( {a + b + 1} \right)i \in }\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{a + b + 1 = 0}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = - 2}\end{array}} \right. \Rightarrow a + b = - 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[q = 2.\]                
B. \[q = 4.\]                
C. \[q = \frac{1}{4}.\]  
D. \[q = \frac{1}{2}.\]

Lời giải

Đáp án D

Ta có \({u_6} = {u_1}{q^5} \Rightarrow \frac{3}{{32}} = 3{q^5} \Rightarrow q = \frac{1}{2}.\)

Câu 2

A. \[\ln \left| {4x + 1} \right| + C.\]               
B. \[4\ln \left| {4x + 1} \right| + C.\] 
C. \[ - \frac{4}{{{{\left( {4x + 1} \right)}^2}}} + C.\]                                
D. \[\frac{1}{4}\ln \left| {4x + 1} \right| + C.\]

Lời giải

Đáp án D

Ta có \(\int {\frac{1}{{4x + 1}}dx} = \frac{1}{4}\ln \left| {4x + 1} \right| + C.\)

Câu 3

A. \[V = 36\pi .\]        
B. \[V = 45\pi .\]        
C. \[V = 15\pi .\]        
D. \[V = 12\pi .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[8\pi \sqrt 6 - 2\pi .\]                              
B. \[8\pi \sqrt 6 + \frac{{22\pi }}{3}.\]     
C. \[8\pi \sqrt 6 - \frac{{22\pi }}{3}.\]               
D. \[4\pi \sqrt 6 + \frac{{22\pi }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 4.                       
B. 8.                       
C. 6.                       
D. 7.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP