Câu hỏi:
24/07/2022 96Cho số phức \[z = a + bi{\rm{ }}\left( {a,{\rm{ }}b \in \mathbb{R}} \right)\] thỏa mãn \[\left| {z - 2} \right| = \left| z \right|\] và \[\left( {z + 1} \right)\left( {\bar z - i} \right)\] là số thực. Tính \[a + b.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Giả sử \(z = a + bi\left( {a,b \in R} \right)\)
Ta có \(\left\{ {\begin{array}{*{20}{l}}{\left| {z - 2} \right| = \left| z \right|}\\{\left( {z + 1} \right)\left( {\bar z - i} \right) \in R}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\left| {a - 2 + bi} \right| = \left| {a + bi} \right|}\\{\left( {a + 1 + bi} \right)\left[ {a - \left( {b + 1} \right)i} \right] \in R}\end{array}} \right.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( {a - 2} \right)}^2} + {b^2} = {a^2} + {b^2}}\\{a\left( {a + 1} \right) + b\left( {b + 1} \right) - \left( {a + b + 1} \right)i \in }\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{a + b + 1 = 0}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = - 2}\end{array}} \right. \Rightarrow a + b = - 1.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.
Câu 2:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\] là
Câu 3:
Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).
Câu 4:
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng
Câu 5:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]
Câu 6:
Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]
Câu 7:
Cho hàm số \[y = {x^3} + mx - \frac{1}{{5{x^5}}}\]. Có bao nhiêu giá trị nguyên âm của tham số m để hàm số đồng biến trên khoảng \[\left( {0;{\mkern 1mu} + \infty } \right)\]?
về câu hỏi!