Câu hỏi:

24/07/2022 212

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \[y = {2^{f\left( x \right)}} - {3^{f\left( x \right)}}\].

Cho hàm số y=f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số  (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Xét hàm số \(g\left( x \right) = {2^{f\left( x \right)}} - {3^{f\left( x \right)}}\), với \(x \in \mathbb{R}\) ta có

\(g'\left( x \right) = f'\left( {x.} \right)\left[ {{2^{f\left( x \right)}}.\ln 2 - {3^{f\left( x \right)}}.\ln 3} \right]\)

\[g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\{2^{f\left( x \right)}}.\ln 2 - {3^{f\left( x \right)}}.\ln 3 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\{\left( {\frac{3}{2}} \right)^{f\left( x \right)}} = \frac{{\ln 2}}{{\ln 3}} = {\log _3}2\end{array} \right.\]

Từ đồ thị hàm số \(y = f\left( x \right)\) ta thấy \(f\left( x \right) \ge - 1,\forall x \in \mathbb{R}.\)

\( \Rightarrow {\left( {\frac{3}{2}} \right)^{f\left( x \right)}} \ge {\left( {\frac{3}{2}} \right)^{ - 1}} = \frac{2}{3} > {\log _3}2\) nên \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = 0.\)

Số điểm cực trị của hàm số \(g\left( x \right)\) bằng số điểm cực trị của hàm số \(f\left( x \right).\)

Vậy hàm số \(y = {2^{f\left( x \right)}} - {3^{f\left( x \right)}}\) có đúng 3 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.

Xem đáp án » 24/07/2022 2,516

Câu 2:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\]

Xem đáp án » 24/07/2022 1,555

Câu 3:

Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).

Xem đáp án » 24/07/2022 1,111

Câu 4:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]

Xem đáp án » 24/07/2022 774

Câu 5:

Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng

Xem đáp án » 24/07/2022 770

Câu 6:

Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]

Xem đáp án » 24/07/2022 589

Câu 7:

Cho hàm số \[y = {x^3} + mx - \frac{1}{{5{x^5}}}\]. Có bao nhiêu giá trị nguyên âm của tham số m để hàm số đồng biến trên khoảng \[\left( {0;{\mkern 1mu} + \infty } \right)\]?

Xem đáp án » 24/07/2022 512

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store