Câu hỏi:
24/07/2022 254Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \[y = {2^{f\left( x \right)}} - {3^{f\left( x \right)}}\].
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án D
Xét hàm số \(g\left( x \right) = {2^{f\left( x \right)}} - {3^{f\left( x \right)}}\), với \(x \in \mathbb{R}\) ta có
\(g'\left( x \right) = f'\left( {x.} \right)\left[ {{2^{f\left( x \right)}}.\ln 2 - {3^{f\left( x \right)}}.\ln 3} \right]\)
\[g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\{2^{f\left( x \right)}}.\ln 2 - {3^{f\left( x \right)}}.\ln 3 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\{\left( {\frac{3}{2}} \right)^{f\left( x \right)}} = \frac{{\ln 2}}{{\ln 3}} = {\log _3}2\end{array} \right.\]
Từ đồ thị hàm số \(y = f\left( x \right)\) ta thấy \(f\left( x \right) \ge - 1,\forall x \in \mathbb{R}.\)
\( \Rightarrow {\left( {\frac{3}{2}} \right)^{f\left( x \right)}} \ge {\left( {\frac{3}{2}} \right)^{ - 1}} = \frac{2}{3} > {\log _3}2\) nên \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = 0.\)
Số điểm cực trị của hàm số \(g\left( x \right)\) bằng số điểm cực trị của hàm số \(f\left( x \right).\)
Vậy hàm số \(y = {2^{f\left( x \right)}} - {3^{f\left( x \right)}}\) có đúng 3 điểm cực trị.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.
Câu 2:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\] là
Câu 3:
Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).
Câu 4:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]
Câu 5:
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng
Câu 6:
Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]
Câu 7:
Gọi D là hình phẳng giới hạn bởi đồ thị hàm số \[y = \sqrt x \], cung tròn có phương trình \[y = \sqrt {6 - {x^2}} \] \[\left( { - \sqrt 6 \le x \le \sqrt 6 } \right)\] và trục hoành (phần gạch chéo). Tính thể tích của vật thể tròn xoay sinh bởi khi quay hình phẳng D quanh trục Ox.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận