Câu hỏi:

24/07/2022 233 Lưu

Trong không gian Oxyz, cho các điểm \[A\left( {7;{\mkern 1mu} 2;{\mkern 1mu} 3} \right)\], \[B\left( {1;{\mkern 1mu} 4;{\mkern 1mu} 3} \right)\], \[C\left( {1;{\mkern 1mu} 2;{\mkern 1mu} 6} \right)\]\[D\left( {1;{\mkern 1mu} 2;{\mkern 1mu} 3} \right)\]. Điểm \[M\left( {a;b;c} \right)\] tùy ý thỏa mãn \[MA + MB + MC + \sqrt 3 MD\] đạt giá trị nhỏ nhất. Tính \[a + b + c.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có \(\overrightarrow {DA} = \left( {6;0;0} \right),\overrightarrow {DB} = \left( {0;2;0} \right),\overrightarrow {DC} = \left( {0;0;3} \right)\) nên tứ diện ABCD là tứ diện vuông đỉnh D. Gọi \(M\left( {x + 1;y + 2;z + 3} \right).\)

\(MA = \sqrt {{{\left( {x - 6} \right)}^2} + {y^2} + {z^2}} \ge \left| {x - 6} \right| \ge 6 - x\)

\(MB = \sqrt {{x^2} + {{\left( {y - 2} \right)}^2} + {z^2}} \ge \left| {y - 2} \right| \ge 2 - y\)

\(MC = \sqrt {{x^2} + {y^2} + {{\left( {z - 3} \right)}^2}} \ge \left| {z - 3} \right| \ge 3 - z\)

\(\sqrt 3 MD = \sqrt {3\left( {{x^2} + {y^2} + {z^2}} \right)} \ge \sqrt {{{\left( {x + y + z} \right)}^2}} \ge x + y + z\)

Do đó \(MA + MB + MC + \sqrt 3 MD \ge 11.\)

Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}x = y = z = 0\\6 - x \ge 0\\2 - y \ge 0\\3 - z \ge 0\\x + y + z \ge 0\end{array} \right. \Leftrightarrow x = y = z = 0.\)

Khi đó \(M\left( {1;2;3} \right) \Rightarrow a + b + c = 6.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Ta có \({u_6} = {u_1}{q^5} \Rightarrow \frac{3}{{32}} = 3{q^5} \Rightarrow q = \frac{1}{2}.\)

Câu 2

Lời giải

Đáp án D

Ta có \(\int {\frac{1}{{4x + 1}}dx} = \frac{1}{4}\ln \left| {4x + 1} \right| + C.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP