Cho hàm số \[f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình \[f\left( {\sqrt {x + 6} + \sqrt {12 - x} } \right) = f\left( {{m^2} + 2m + 2} \right)\] có nghiệm?

Quảng cáo
Trả lời:
Đáp án B
Hàm số \(f\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right).\)
Mà \(\sqrt {x + 6} + \sqrt {12 - x} > 0\) và \({m^2} + 2m + 2 = {\left( {m + 1} \right)^2} + 1 > 0.\)
Nên \(f\left( {\sqrt {x + 6} + \sqrt {12 - x} } \right) = f\left( {{m^2} + 2m + 2} \right) \Leftrightarrow \sqrt {x + 6} + \sqrt {12 - x} = {m^2} + 2m + 2.\)
Ta có
\({\left( {\sqrt {x + 6} + \sqrt {12 - x} } \right)^2} = 18 + 2\sqrt {\left( {x + 6} \right)\left( {12 - x} \right)} \ge 18 \Rightarrow \sqrt {x + 6} + \sqrt {12 - x} \ge 3\sqrt 2 .\)
Lại có \(\sqrt {x + 6} + \sqrt {12 - x} \le \sqrt {2\left( {x + 6 + 12 - x} \right)} = 6 \Rightarrow 3\sqrt 2 \le {m^2} + 2m + 2 \le 6\)
\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{m^2} + 2m + 2 = 5}\\{{m^2} + 2m + 2 = 6}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{l}}{m - 1}\\{m = 3}\end{array}} \right.\) thỏa mãn.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Ta có \({u_6} = {u_1}{q^5} \Rightarrow \frac{3}{{32}} = 3{q^5} \Rightarrow q = \frac{1}{2}.\)
Lời giải
Đáp án D
Ta có \(\int {\frac{1}{{4x + 1}}dx} = \frac{1}{4}\ln \left| {4x + 1} \right| + C.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.