🔥 Đề thi HOT:

1332 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)

7.5 K lượt thi 34 câu hỏi
437 người thi tuần này

CÂU TRẮC NGHIỆM ĐÚNG SAI

2 K lượt thi 60 câu hỏi
336 người thi tuần này

Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án

64.6 K lượt thi 50 câu hỏi
305 người thi tuần này

44 bài tập Đạo hàm và khảo sát hàm số có lời giải

626 lượt thi 44 câu hỏi
275 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)

1.1 K lượt thi 34 câu hỏi
256 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)

1.3 K lượt thi 34 câu hỏi
177 người thi tuần này

50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải

362 lượt thi 50 câu hỏi

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Cho a là số thực dương tùy ý và \[a \ne 1.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án

Câu 2:

Điểm nào trong hình vẽ bên là điểm biểu diễn số phức \[z = - 1 - 2i\]?

Điểm nào trong hình vẽ bên là điểm biểu diễn số phức  (ảnh 1)

Xem đáp án

Câu 3:

Cho \[\int\limits_0^1 {f\left( x \right)dx} = 2\]\[\int\limits_1^2 {f\left( x \right)dx} = - 3.\] Tích phân \[\int\limits_0^2 {f\left( x \right)dx} \] bằng

Xem đáp án

Câu 4:

Trong không gian Oxyz, cho hai điểm \[A\left( {2;3;4} \right),{\rm{ }}B\left( {6;2;2} \right).\] Tìm tọa độ của vectơ \[\overrightarrow {AB} .\]

Xem đáp án

Câu 5:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ ?

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ (ảnh 1)

Xem đáp án

Câu 6:

Cho số phức \[z = 1 + 2i.\] Tìm số phức \[w = {z^2} + i.\]

Xem đáp án

Câu 7:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau:   Giá trị cực đại (ảnh 1)

Giá trị cực đại của hàm số đã cho là

Xem đáp án

Câu 8:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau:   Hàm số đã  (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án

Câu 9:

Tìm tập xác định D của hàm số \[y = {\left( {{x^2} - 6x + 8} \right)^{\frac{1}{{2020}}}}.\]

Xem đáp án

Câu 10:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = {e^{4x + 3}}\]

Xem đáp án

Câu 11:

Trong không gian Oxyz, cho đường thẳng \[d:\left\{ \begin{array}{l}x = 2 + t\\y = - 1\\z = 3 + 2t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right).\] Đường thẳng d đi qua điểm có tọa độ nào dưới đây?

Xem đáp án

Câu 12:

Trong một lớp học có 32 học sinh. Hỏi có bao nhiêu cách chọn 2 học sinh lên bảng kiểm tra bài cũ?

Xem đáp án

Câu 13:

Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}q = \frac{1}{2}.\] Số \[\frac{3}{{512}}\] là số hạng thứ mấy?

Xem đáp án

Câu 14:

Cho hình nón (N) có đường cao bằng 4 và đường sinh bằng 5. Tính thể tích V của khối nón (N).

Xem đáp án

Câu 15:

Cho hàm số f(x) liên tục trên \[\mathbb{R}.\] Gọi S là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = 0\] \[x = 3\] (như hình vẽ). Mệnh đề nào dưới đây là đúng?

Cho hàm số f(x) liên tục trên  R Gọi S là diện tích hình phẳng  (ảnh 1)

Xem đáp án

Câu 16:

Giải phương trình \[{\left( {27\sqrt 3 } \right)^{{x^2} - x + 1}} = {9^{x + 1}}.\]

Xem đáp án

Câu 18:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau:   Phương trình (ảnh 1)

Phương trình \[2f\left( x \right) - 9 = 0\] có số nghiệm thực là

Xem đáp án

Câu 19:

Tìm giá trị nhỏ nhất \[{y_{\min }}\] của hàm số \[y = {x^4} - 4{x^3} + 8x.\]

Xem đáp án

Câu 20:

Tổng giá trị các nghiệm thực của phương trình \[{\log _2}x.{\log _4}x.{\log _8}x.{\log _{16}}x = \frac{{32}}{3}\] bằng

Xem đáp án

Câu 21:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Cho hàm số  y=f(x) có bảng biến thiên như sau:   (ảnh 1)

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

Xem đáp án

Câu 22:

Tìm tất cả các giá trị của tham số m để hàm số \[y = {x^3} - m{x^2} + \left( {{m^2} - 16} \right)x + 3\] đạt cực tiểu tại điểm \[x = 0.\]

Xem đáp án

Câu 23:

Cho hai số thực dương \[a,{\rm{ }}b\] thỏa mãn \[{\log _4}a = {\log _6}b = {\log _9}\left( {a + b} \right)\]. Tính \[\frac{a}{b}\].

Xem đáp án

Câu 27:

Trong không gian, cho hình thang cân ABCD có đáy nhỏ \[AB = 1\], đáy lớn \[CD = 3\] và cạnh bên \[AD = \sqrt 2 .\] Tính thể tích V của khối tròn xoay, nhận được khi quay hình chữ nhật ABCD xung quanh trục \[AB.\]

Xem đáp án

Câu 33:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x - 5y - z = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{{ - 1}}.\] Viết phương trình đường thẳng Δ nằm trên mặt phẳng (P) sao cho Δ cắt và vuông góc với đường thẳng d.

Xem đáp án

Câu 35:

Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng

Xem đáp án

Câu 36:

Cho hàm số \[y = f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có bảng biến thiên như sau:

Cho hàm số y=f(x)  Hàm số y=f'(x)có bảng biến (ảnh 1)

Bất phương trình \[f\left( x \right) < {x^3} + m\] đúng với mọi \[x \in \left( { - 2;1} \right)\] khi và chỉ khi

Xem đáp án

Câu 38:

Cho khối lăng trụ \[ABC.A'B'C'\] có thể tích bằng \[9{a^3}\] và M là điểm nằm trên cạnh \[CC'\] sao cho \[MC = 2MC'\]. Thể tích khối tứ diện \[AB'CM\] bằng

Xem đáp án

Câu 39:

Có bao nhiêu số phức \[z\] thỏa mãn \[\left( {1 + i} \right)z + \bar z\] là số thuần ảo và \[\left| {z - 2i} \right| = 1\]?

Xem đáp án

Câu 40:

Cho hàm số \[y = f\left( x \right)\]  có đồ thị như hình vẽ. Số nghiệm thực của phương trình \[f\left( {{f^2}\left( x \right) - 3} \right) = 0\]

Cho hàm số y=f(x) có đồ thị như hình vẽ. Số nghiệm thực (ảnh 1)

Xem đáp án

Câu 43:

Một hộp đựng 40 tấm thẻ được đánh số thứ tự từ 1 đến 40. Rút ngẫu nhiên 10 tấm thẻ. Tính xác suất để lấy được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó có đúng một thẻ mang số chia hết cho 6.

Xem đáp án

Câu 44:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\left[ {0;1} \right]\] thỏa mãn \[f'\left( x \right) = \left( {2x + 1} \right){e^x} + f\left( x \right)\]\[f\left( 0 \right) = 0.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án

Câu 50:

Cho ba số phức \[{z_1},{\rm{ }}{z_2},{\rm{ }}{z_3}\] thỏa mãn \[\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1\]; \[\left| {{z_1} - {z_2}} \right| = \frac{{\sqrt 6 + \sqrt 2 }}{2}\] \[z_1^2 = {z_2}{z_3}.\] Tính giá trị của \[\left| {{z_2} - {z_3}} \right| - \left| {{z_3} - {z_1}} \right|\].

Xem đáp án

4.6

3257 Đánh giá

50%

40%

0%

0%

0%