Câu hỏi:
24/07/2022 178Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x + y - z - 3 = 0\] và hai điểm \[A\left( {1;1;1} \right)\], \[B\left( { - 3; - 3; - 3} \right)\]. Mặt cầu \[\left( S \right)\] đi qua hai điểm \[A,{\rm{ }}B\] và tiếp xúc với (P) tại điểm C. Biết rằng C luôn thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Đáp án B
Gọi \(I = AB \cap \left( P \right)\).
Ta có \(\overrightarrow {BA} = \left( {4;4;4} \right) = 4\left( {1;1;1} \right) \Rightarrow AB:\left\{ \begin{array}{l}x = 1 + t\\y = 1 + t\\z = 1 + t\end{array} \right. \Rightarrow I\left( {t + 1;t + 1;t + 1} \right).\)
Mà \(I \in \left( P \right) \Rightarrow \left( {t + 1} \right) + \left( {t + 1} \right) - \left( {t + 1} \right) - 3 = 0 \Leftrightarrow t = 2 \Rightarrow I\left( {3;3;3} \right)\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\overrightarrow {IA} = \left( { - 2; - 2; - 2} \right)}\\{\overrightarrow {IB} = \left( { - 6; - 6; - 6} \right)}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{IA = 2\sqrt 3 }\\{IB = 6\sqrt 3 }\end{array}} \right.\)
Mặt cầu \(\left( S \right)\) tiếp xúc với \(\left( P \right)\) tại C nên IC là tiếp tuyến của \(\left( S \right)\).
Do đó \(IA.IB = I{C^2} \Rightarrow IC = \sqrt {IA.IB} = 6 \Rightarrow C\) thuộc mặt cầu có tâm \(I\left( {3;3;3} \right)\) và bán kính \(R = IC = 6\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \[\int\limits_0^1 {f\left( x \right)dx} = 2\] và \[\int\limits_1^2 {f\left( x \right)dx} = - 3.\] Tích phân \[\int\limits_0^2 {f\left( x \right)dx} \] bằng
Câu 2:
Cho khối lăng trụ \[ABC.A'B'C'\] có thể tích bằng \[9{a^3}\] và M là điểm nằm trên cạnh \[CC'\] sao cho \[MC = 2MC'\]. Thể tích khối tứ diện \[AB'CM\] bằng
Câu 3:
Cho hàm số \[y = \frac{{mx + 7m - 8}}{{x - m}}\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên từng khoảng xác định?
Câu 4:
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng
Câu 5:
Trong không gian Oxyz, cho hai điểm \[A\left( {2;3;4} \right),{\rm{ }}B\left( {6;2;2} \right).\] Tìm tọa độ của vectơ \[\overrightarrow {AB} .\]
Câu 6:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = {e^{4x + 3}}\] là
Câu 7:
Cho \[a,{\rm{ }}b\] là các số thực dương thỏa mãn \[b > 1\] và \[\sqrt a \le b < a.\] Giá trị nhỏ nhất của biểu thức \[P = {\log _{\frac{a}{b}}}a + 2{\log _{\sqrt b }}\left( {\frac{a}{b}} \right)\] bằng
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
44 bài tập Đạo hàm và khảo sát hàm số có lời giải
về câu hỏi!