Câu hỏi:

24/07/2022 3,891

Cho khối lăng trụ \[ABC.A'B'C'\] có thể tích bằng \[9{a^3}\] và M là điểm nằm trên cạnh \[CC'\] sao cho \[MC = 2MC'\]. Thể tích khối tứ diện \[AB'CM\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Cho khối lăng trụ ABC.A'B'C' có thể tích bằng 9a^3 và M là điểm (ảnh 1)

Ta có \({V_{AB'CM}} = {V_{B'.ACM}} = \frac{1}{3}d\left( {B';(ACM)} \right).{S_{ACM}}\).

Từ \(BB'{\rm{ // CM}} \Rightarrow {\rm{BB' // }}\left( {ACM} \right)\)

\( \Rightarrow d\left( {B';(ACM)} \right) = d\left( {B;(ACM)} \right)\)

\( \Rightarrow {V_{AB'CM}} = \frac{1}{3}d\left( {B;(ACM)} \right).{S_{ACM}} = {V_{B.ACM}} = {V_{M.ABC}}\)

\( = \frac{2}{3}{V_{C'.ABC}} = \frac{2}{3}.\frac{1}{3}{V_{ABC.A'B'C'}} = 2{{\rm{a}}^3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a (ảnh 1)

Kẻ \(SH \bot \left( {ABC} \right)\), gọi \(K = AH \cap BC\).

Kẻ \(HP \bot {\rm{S}}K \Rightarrow d\left( {A;(SBC)} \right) = \frac{3}{2}d\left( {H;(SBC)} \right) = \frac{3}{2}HP = d\).

Ta có \(\frac{1}{{H{P^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{K^2}}}\). Cạnh \(HK = \frac{{AB}}{{2\sqrt 3 }} = \frac{a}{{2\sqrt 3 }}\)

\(S{H^2} = S{A^2} - A{H^2} = 4{{\rm{a}}^2} - {\left( {\frac{{AB}}{{\sqrt 3 }}} \right)^2} = \frac{{11{{\rm{a}}^2}}}{3}\)

\( \Rightarrow HP = a\sqrt {\frac{{11}}{{135}}} \Rightarrow d\left( {A;(SBC)} \right) = \frac{{a\sqrt {165} }}{{15}}\).

Câu 2

Lời giải

Đáp án D

Ta có \(\int\limits_0^2 {f\left( x \right)d{\rm{x}}} = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} + \int\limits_1^2 {f\left( x \right)d{\rm{x}}} = - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP