Câu hỏi:
24/07/2022 213Cho hình nón (N) có đường sinh bằng a, góc ở đỉnh bằng \[90^\circ .\] Thiết diện qua đỉnh của (N) là một tam giác nằm trong mặt phẳng tạo với mặt phẳng đáy một góc bằng \[60^\circ .\] Tính theo a diện tích S của tam giác này.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án A
\(\Delta SAB\) vuông cân tại \(S \Rightarrow SO = OA = OB = \frac{a}{{\sqrt 2 }}\).
Thiết diện qua đỉnh của \(\left( N \right)\) là \(\Delta SC{\rm{D}}\) như hình vẽ.
Kẻ \(OP \bot C{\rm{D}} \Rightarrow \widehat {\left( {(SC{\rm{D}});(OC{\rm{D}})} \right)} = \widehat {SPO} = 60^\circ \).
\(\sin 60^\circ = \frac{{SO}}{{SP}} = \frac{{\sqrt 3 }}{2} \Rightarrow SP = \frac{2}{{\sqrt 3 }}.SO = \frac{2}{{\sqrt 3 }}.\frac{a}{{\sqrt 2 }} = a\sqrt {\frac{2}{3}} \).
\(\tan 60^\circ = \frac{{SO}}{{OP}} \Rightarrow OP = \frac{{SO}}{{\sqrt 3 }} = \frac{a}{{\sqrt 6 }}\)
\( \Rightarrow P{\rm{D}} = \sqrt {O{{\rm{D}}^2} - O{P^2}} = \sqrt {{{\left( {\frac{a}{{\sqrt 2 }}} \right)}^2} - {{\left( {\frac{a}{{\sqrt 6 }}} \right)}^2}} = \frac{a}{{\sqrt 3 }}\)
\( \Rightarrow C{\rm{D}} = 2P{\rm{D}} = \frac{{2{\rm{a}}}}{{\sqrt 3 }} \Rightarrow {S_{SC{\rm{D}}}} = \frac{1}{2}SP.C{\rm{D}} = \frac{{{a^2}\sqrt 2 }}{3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho khối lăng trụ \[ABC.A'B'C'\] có thể tích bằng \[9{a^3}\] và M là điểm nằm trên cạnh \[CC'\] sao cho \[MC = 2MC'\]. Thể tích khối tứ diện \[AB'CM\] bằng
Câu 2:
Cho \[\int\limits_0^1 {f\left( x \right)dx} = 2\] và \[\int\limits_1^2 {f\left( x \right)dx} = - 3.\] Tích phân \[\int\limits_0^2 {f\left( x \right)dx} \] bằng
Câu 3:
Cho hàm số \[y = \frac{{mx + 7m - 8}}{{x - m}}\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên từng khoảng xác định?
Câu 4:
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng
Câu 5:
Trong không gian Oxyz, cho hai điểm \[A\left( {2;3;4} \right),{\rm{ }}B\left( {6;2;2} \right).\] Tìm tọa độ của vectơ \[\overrightarrow {AB} .\]
Câu 6:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = {e^{4x + 3}}\] là
Câu 7:
Cho hàm số f(x) liên tục trên \[\mathbb{R}.\] Gọi S là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = 0\] và \[x = 3\] (như hình vẽ). Mệnh đề nào dưới đây là đúng?
về câu hỏi!