Câu hỏi:

24/07/2022 238 Lưu

Tìm tất cả các giá trị của tham số m để hàm số \[y = {x^3} - m{x^2} + \left( {{m^2} - 16} \right)x + 3\] đạt cực tiểu tại điểm \[x = 0.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Tìm tất cả các giá trị của tham số m để hàm số y = x^3 - mx^2  (ảnh 1)

Ta có \(y' = 3{{\rm{x}}^2} - 2m{\rm{x}} + {m^2} - 16 \Rightarrow y'' = 6{\rm{x}} - 2m\).

YCBT \( \Leftrightarrow \left\{ \begin{array}{l}y'\left( 0 \right) = 0\\y''\left( 0 \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 16 = 0\\ - 2m > 0\end{array} \right. \Leftrightarrow m = - 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a (ảnh 1)

Kẻ \(SH \bot \left( {ABC} \right)\), gọi \(K = AH \cap BC\).

Kẻ \(HP \bot {\rm{S}}K \Rightarrow d\left( {A;(SBC)} \right) = \frac{3}{2}d\left( {H;(SBC)} \right) = \frac{3}{2}HP = d\).

Ta có \(\frac{1}{{H{P^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{K^2}}}\). Cạnh \(HK = \frac{{AB}}{{2\sqrt 3 }} = \frac{a}{{2\sqrt 3 }}\)

\(S{H^2} = S{A^2} - A{H^2} = 4{{\rm{a}}^2} - {\left( {\frac{{AB}}{{\sqrt 3 }}} \right)^2} = \frac{{11{{\rm{a}}^2}}}{3}\)

\( \Rightarrow HP = a\sqrt {\frac{{11}}{{135}}} \Rightarrow d\left( {A;(SBC)} \right) = \frac{{a\sqrt {165} }}{{15}}\).

Câu 2

Lời giải

Đáp án D

Ta có \(\int\limits_0^2 {f\left( x \right)d{\rm{x}}} = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} + \int\limits_1^2 {f\left( x \right)d{\rm{x}}} = - 1\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP